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Executive Summary

The central contribution of this work is to assemble necessary Texas data and use this data to 
statistically estimate demand functions pertaining to water use in Texas communities.  These 
functions quantify how per capita daily water use responds to primary determinants such as 
climate, weather, income, and water rates.  The period of analysis is the most recent five years 
for which data is available, 1999-2003.  The targeted sample is all Texas utilities serving a 
population of at least 1,000 people.  Of the more than 1,400 utilities satisfying initial selection 
criteria, slightly more than half are represented in the final dataset compiled with this study.

Except for water rates, all data used here is derived from secondary sources.  Water use and 
population data originate from the annual reports Texas utilities make to the Texas Water 
Development Board, and this data is subsequently processed by TWDB analysts to improve  
consistency and accuracy.  Water use data is monthly, so there are potentially 60 observations in 
this five-year period for each water utility.  Weather data is provided by the National Weather 
Service network; data from 141 Texas weather stations are used.  These records include daily 
observations on minimum and maximum temperature as well as precipitation for the five-year 
study period.  Income information is developed from county-level data generated by the U.S. 
Bureau of Economic Analysis.

Water rate data is obtained though an original survey of the 1,406 candidate water systems.  All 
pertinent aspects of water and wastewater rates were sought with this mailed survey.  Rate 
elements include recurring nonvolumetric charges, block definitions, block rates, preset seasonal 
variations, and wastewater winter averaging.  For each surveyed system, 1999-2003 rates are 
collected by this survey.

Once all data elements are combined and erroneous anomalies are corrected or discarded, the 
final dataset contains more than 39,000 observations from 730 utilities.  Implicitly, this data 
captures the relationships between water use decisions made by average utility clients and a few 
important aspects of the wide array of physical and economic conditions occurring in Texas.  
Within this data is ample evidence that consumers respond to multiple stimuli in making their 
consumption conditions.  In this way, water is similar to other commodities and goods selected 
by households.  That is, households have limited incomes to spread across a broad set of 
products and desires, so when households choose to consume water – and choose the amount of 
water – they are naturally attentive to their personal circumstances.  The overall goal here is to 
gain better understanding of how some of these conditions "drive" our communities' water use 
decisions.  By emphasizing a formal, quantitative approach to this question, better foundations 
can be developed for several important kinds of project and policy analysis.  Among potential 
uses of these results are the projection of economic benefits for projects that alleviate water 
supply constraints and the analysis of long-term responses to water rate modifications.

After selected elements of the dataset are individually characterized to extract general facts about 
the nature of community water use in Texas, regression methods are applied to quantify the 
intrinsic relationships maintained between water use and its drivers.  Statistical models are 
formulated and estimated.  Parameterization of a nonlinear functional form known as the 
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generalized Cobb-Douglas (GCD) function is the emphasis of this work.  The chosen dependent 
variable for this function is gallons per capita per day.  This choice interfaces well with many 
types of water planning analysis that have population projections or growth rates at their 
disposal.  

The investigated independent (driver) variables are (1) long-term rainfall (30-year monthly 
averages in the locale), (2) a short-term weather composite accounting for local temperature and 
rainfall, (3) income, (4) water price, and (5) whether or not the utility provides wastewater 
collection and treatment services.  Using these variables, many variants of the GCD functional 
form are estimated using ordinary least squares.  These variants pertain to alternative subsets of 
the 39,000-observation subsets such as only January data or only water plus wastewater utilities.  
The purpose of these alternative inspections is to subjectively gauge model stability and 
reliability.

For cross-sectional data, the overall quality of model performance is very good.  All driver 
variables are demonstrated to have significant influences on water consumption.  The only 
potentially disclosed weakness involves the performance of the income driver, and only in a 
particular data subset.  Because income data is limited to county-level data, which may not 
match well with each utility operating within a given county, it is not surprising that this variable 
does not perform as well as the others.

Perhaps the most interesting finding is that water price is a strong and very consistent driver of 
water use within the State.  As expected, when price rises (and nothing else changes), water 
consumption decreases.  The actual quantitative linkage between price and consumption is 
reported as "elasticity" numbers, as is done for all other continuously valued drivers in this study.  
Price elasticities discovered here range from –0.4 to –0.8, depending on service type (water plus 
wastewater or only water), month, and data subset.  Very clear and uniform results pertaining to 
the seasonality of price elasticity are also apparent, as households are more responsive to 
summer prices.  Water use is also more responsive to price in the rural and urban fringe utilities 
which do not provide wastewater collection and treatment services.

Overall, demand responses to historical precipitation (R) are mildly negative.  Hence, locales that  
are accustomed to drier weather tend to use more water, but not markedly more.  There are 
additional indications that the driest communities may actually increase water use if they were to 
experience a shift towards permanently wetter weather.  An explanation for this phenomena is 
that wetter weather can encourage shifts in the water-using durables held by consumers.  That is, 
wetter weather can encourage a shift to lawns and landscapes which are more water intensive.  
Similarly, permanent shifts to drier weather may evoke long-term responses in the direction of 
reduced commitments to outdoor water use.  Thus, it would seem that consumers in more arid 
regions make progressively greater adaptations to their climate conditions.  The fact that 
consumers make such changes is additional evidence of the controllability of water use.  It even 
indicates where things may progress should rising scarcity greatly increase water rates.

The study also tabulates numerous elasticity findings for the several examined exogenous 
variables, and the coefficients estimated for individual models are tabulated as well.  To aid 
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application of these findings, early portions of the report provide context by discussing some of 
the most compelling options for using this information.

As readers interpret these results, it should be acknowledged that these findings cast doubt on 
attempts to criticize consumers in a particular locale for their high water use or even to praise 
consumers in other areas for their low water use.  The range of climatic conditions and water 
scarcities are disparate within a state as diverse as Texas, but all consumers are simply 
responding to their individual circumstances when they make water use decisions.  Only a few 
indices of these conditions are incorporated in the analysis reported here, yet it is very apparent 
that these variables do drive water use decisions.    

From a conservation policy perspective, water rates are intriguing for their role in signaling 
water scarcity to consumers, which is one motivation for their inclusion in this research.  Indeed, 
a principle underlying this type of research is that regulatory efforts to standardize (or minimize) 
community water use are misguided.  Water use generates net benefits for consumers, and 
preservation/maximization of these net benefits is a more compelling goal than simply reducing 
water use regardless of benefit and cost consequences.  If water utilities throughout the state 
could establish water rates that incorporate the scarcity value of natural water, in addition to cost 
of service considerations, appropriate types of conservation activity will be promoted.

Because the data of this study is unique in its comprehensive collection of water rates, a final 
aspect of this study is to characterize the changing nature of these rates in Texas.  The availability 
of a prior analysis using 1980's data makes it possible to compare 1980's data and its demand 
results to the data and results of this 2006 report.  The results of two separate demand analyses, 
one using 1981-1985 data and the one reported here (1999-2003 data), are very comparable.  
Overall statistical results are similar.  A noteworthy finding may be the rising responsiveness of 
demand to water and sewer rates.  While the 1980's data also suggests that water demand is 
functionally dependent on rates, the more recent data indicates a higher degree of 
responsiveness.  The likely cause is the rising levels of water and sewer rates.  Both rate types 
have continued to grow at paces greater than that of inflation, thereby exacting greater impacts 
on household budgets.  Over the 22-year period extending from 1981 to 2003, most marginal 
prices of water (at different consumption levels) have risen more than 2% annually after 
adjusting for inflation.  Sewer rates have been rising at annual rates in the 4-5% range during the 
same period.
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Chapter 1

Demand Applications and Research Overview

Despite the importance of water demand in modern water management activities, it remains 
misunderstood, both conceptually and empirically.  The objectives of the research reported here 
emphasize an empirical approach to urban water demand in Texas.  That is, the main tasks are to 
assemble recent data and to use this data to quantitatively estimate the water demands associated 
with households throughout the State.  To establish a context for this work and thereby enable 
practitioners to make better use of it, the purposes of this introductory chapter are to (1) define 
water demand, (2) indicate some of the manners in which water demand information can be 
reasonably applied, and (3) describe some of the features of this report and how it is organized.

Interpreting "Water Demand"

The lay concept of "water demand" is that demand is appropriately described by a coefficient, 
such as 161 gallons per capita per day or 3.4 acre-feet per acre of irrigated rice annually.  
Unfortunately, "demand" information of this type has declining practicality in a world of 
growing water scarcity.  Constant coefficients do not provide insight about the prospective 
responses of water use behavior to alternative conditions, especially rising scarcity.  These 
coefficients typically arise from backward-looking historical conditions that are unlikely to be 
repeated as water scarcity intensifies.  Nor do such coefficients relay usable information about 
the consumer-incurred costs of not meeting a targeted level of water use.  This is important 
policy information to obtain.  Supply-increasing water policies produce benefits that can be 
measured as the amount of costs they will alleviate for consumers1, but only if cost measurement 
is based on lost benefits derived from a correct interpretation of demand.

For these reasons, water planners and managers are beginning to recognize water demand as a 
function describing the relationship between consumer behavior and demand's determining 
factors.  In professional literature pertaining to water demand these factors are sometimes called 
drivers or exogenous variables.  In the following equation the quantity of water is on the left-
hand side and the various x terms are the drivers.  W is expressed in ordinary units, such as 
gallons per capita per day, but it is not fixed except for its dependence on the xi factors.

 W = f(x1, x2, x3, ...) + µ [1.1]

f denotes the demand function in eq. [1.1].  The inclusion of a random error term, µ, reminds us 
that water use is not predictable with perfect accuracy, mainly because of many unaccounted-for 
determinants (omitted drivers) as well as measurement errors involving variables on both sides 
of this equality.  

The demand function f may be linear in form, but it is typically nonlinear, inferring that linear 
representations are approximations at best.  When demand information omits this functional 
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relationship as the basic coefficients noted previously do (such as 161 gallons per capita per 
day), the resulting concept of demand is normally based on prior observations of "water use," 
"water consumption," or "the quantity of water demanded" that cannot be reliably expected to 
reoccur in the future.  After all, rising water demand (upward-shifting urban demand functions) 
in the face of constant or declining water availability (such as groundwater depletion) implies 
that certain water use behaviors must be modified over time.  How this behavior gets modified, 
or how it might be modified, can only be examined by estimating a functional portrayal of water 
demand, as in eq. [1.1].

Henceforth in this report and in contrast to typical state/regional planning documents, all 
references to "demand" are reserved for functional representations.  Thus, it is not said that 
"water demand in 2002 across Texas communities ranged from 95 to 325 gallons per capita per 
day."  Such statements must be phrased differently, as with "water use in 2002 across Texas 
communities ranged from 95 to 325 gallons per capita per day."  Terms such as "use," 
"consumption," and the more cumbersome "quantity of water demanded" successfully indicate 
that the referenced quantities represent specific historical points from actual demand functions 
without indicating the full character of such functions.

Demand Excludes Supplyside Considerations

Another helpful distinction for understanding the notion of demand is to set aside factors that 
principally affect water supply.  In the case of urban water demand, households are receiving 
treated and pressurized water for which they are commonly billed on the basis of metered water 
consumption.  For such circumstances, water supply is what occurs on the utility's side of 
consumers' water meters.  

Therefore, in addition to the physical availability of water – how much water is in the streams, 
reservoirs, and aquifers that are at a community's disposal – supplyside factors include 
infrastructural constraints and investments as well as the many activities a utility undertakes in 
transforming natural water into the retail water received by customers.  In contemporary settings, 
supply-related determinants can also include water right holdings of various types as well as 
contract relationships with water wholesalers such as river authorities and water districts.  All of 
these supplyside considerations interact to determine how much water consumers can have and 
how much it will cost them.  Since physical and infrastructural limitations can be modified by 
sufficient infusions of money, this expanded portrayal of supply offers better realism than can be 
achieved when water supply is viewed as a purely hydrologic matter.

The economically informed notions of demand and supply offer many advantages for improving 
water management.  By distinguishing between demand drivers and supply drivers, greater 
accuracy is obtained and a fuller range of management instruments is considered.  The 
possibilities for performing policy analysis or project analysis are also enriched, as shall be noted 
in forthcoming sections of this chapter.  Another advantage of the demand/supply delineation is 
to clarify the interdependent manner in which demand and supply interact to establish water use.  
In the majority of situations, consumers are free to consume as much water as they like as long 
as they pay their bills.  Supplyside features are therefore signaled to consumers in the form of 
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water rates.  Urban water use scenarios are not properly construed as market situations however, 
given that there is a single seller that establishes rates in advance of projected consumption.  
Competition is necessarily absent, and rates are not resolved in a marketlike fashion.

An important contribution of the demand/supply separation is to establish an enriched thought-
model for water management issues.  Judging from the opinions one hears or reads in common 
media, the various human activities conducted in families, farms, and factories have water needs 
that must be satisfied using the water that is stored or flowing in our physical environment.  One 
of the many problems associated with this notion is that there are many differences between the 
type of retail water that is consumed by people and the types of natural water that are found in 
waterways.  These differences are quite variable across a state as diverse as Texas, and they must 
be bridged by utilities that make sizable expenditures to store, pump, transport, cool, clean, 
distribute, pressurize, and improve the reliability of naturally occurring water.  However, when 
the notion of need is replaced with the notion of demand, many useful strategies for addressing 
water scarcity are realized.  Similarly but not as dramatically, when exclusive emphasis upon 
supply as a physical phenomena is broadened to acknowledge the value-added transformations of 
producing retail water, a different and more realistic depiction of water issues and solutions is 
achieved.

Choosing Demand Drivers

The number of actual demand drivers (the x's of eq. [1.1]) is likely to form a very long list since 
there are many factors that may influence demand in great or small ways.  The water demand 
literature recognizes that different households might differ in their water use for a wide array of 
reasons.  Here is a partial listing for households in different locations.

number of occupants
number of bathrooms
number and types of appliances
presence and size of swimming pool
lot area
lawn species and condition
manual versus automatic lawn irrigation
landscape vegetation types
soil type

weather
income
wealth
property value
neighborhood characteristics
water and wastewater rates
water quality
traditions and culture
personal preferences

Empirical study of many of these differences requires "microdata", i.e. data that includes the 
water use records of different households as well as the differing driver levels of each household.  
For example, the effect of lot size on household water use can be studied if data on water use and 
lot size is available for a suitably large sample of households and the effect of other drivers can 
be controlled or is also measured for each household.  

Although all of these demand factors may be interesting in specific planning settings, the 
extensive scale of the present study focuses on intercommunity comparisons.  That is, we wish to 
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better understand what factors distinguish communities from one another when it comes to water 
use.  Because aggregate, community-level data is the appropriate basis for studies such as this 
one, it is not possible to simultaneously investigate micro-level drivers.  The "short list" of 
demand drivers to be investigated here is advised jointly by prior literature, data availability, and 
the importance of uncovering certain relationships for water planning problems.  Specifically, the 
crucial drivers include long-term and short-term weather pertaining to temperature and 
precipitation, income, and water and wastewater rates.  Thus, this study attempts to estimate 
demand functions of the following generic form.

 
W

cap
  = f(weather, income, rates) + µ [1.2]

where 
W

cap
  is a community's average monthly water use per capita,

 weather may be one or more temperature and precipitation measures or may be indices 
formed from temperature and precipitation measures,

 income is average real income per capita,

 rates may be one or more features of a community's procedures for assessing water bills, 
and

 µ is accumulated unknown influences, which are presumed to equal zero on average.

Several issues immediately arise as one begins to contemplate the relationship posed by eq. [1.2]:

• Many potential demand drivers included in the prior two-column listing are omitted in eq. 
[1.2].  Most of the omissions stem from the inappropriateness of microdata when 
emphasizing intercommunity differences.  Not only is it overly ambitious to acquire 
sufficient microdata spanning Texas, but every Texas community is populated by households 
that have pools or do not, have varying lot sizes, have dishwashers or not, etc.  Because the 
tasks of this research focus on intercommunity differences, it is a good idea to inspect drivers 
that (1) are well acknowledged, (2) have the greatest potential to assist water planning 
activities, and (3) are associated with readily acquired data.  

• Selecting W/cap as the dependent variable is recommended by the widespread use of this 
measure and the ease with which demand functions of this form can be combined with 
population projections to obtain water demand projections for an entire city or region.  In the 
case of eq. [1.2], multiplication by population yields a single demand function.  To then 
obtain a single demand point (such as 120.3 million gallons), the expected levels of demand 
drivers must be substituted into the function.  Therefore, even though the statistical 
estimation of eq. [1.2] requires statewide data, application of the resulting function may only 
require data for a single utility.

• With the exception of rates, the elements of eq. [1.2] are not difficult to obtain even though 
there are important details to be respected.  In the case of rates, there is no central reporting 
conducted for the rates used by Texas utilities, and rates are challenging to record because 
they are highly dimensioned.  It is therefore difficult to obtain such data for a large number of 
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communities, particularly when older rates are needed.  Still, rates are a highly desirable 
component of demand functions, because they open important avenues for understanding and 
managing the growth in water scarcity.

Additional details regarding the definition of specific exogenous variables and the details of data 
collection are undertaken in the forthcoming chapter.  

Report Components

The big-picture details of this study are that five years (1999-2003) of monthly water production 
data for more than 700 Texas utilities are compiled along with their weather, income, and rate 
experiences to produce a dataset with more than 39,000 observations.  Many more communities 
and data were inspected during the compilation of the final dataset, but certain requirements 
pertaining to conformity and accuracy resulted in the removal of some data candidates.  

In Chapter 2 the origins and development of each data component are separately described.  All 
procedures employed in the resolution of the final dataset are reviewed there.  In Chapter 3 
individual data elements are examined to discover fundamental information about the variety of 
experiences within Texas.  Chapter 4 is dedicated to the statistical estimation of alternative 
community water demand functions, using the fully assembled data set.  Noteworthy empirical 
findings and implications are also highlighted in Chapter 4.  Chapter 5 contains a brief 
examination of the changes in Texas water rates found to have occurred over the past twenty 
years, and it also compares the findings of this study to those of prior Texas studies.  Because of 
the content of the Executive Summary, a final "Summary" chapter is unnecessary.

In the remainder of Chapter 1, some of the more useful opportunities to apply demand functions 
will be presented.  The purpose is to advance the general understanding of water demand 
concepts and to assist future water planning efforts in applying these findings.

Application Guidance

There are many end uses of water demand functions.  Some require that a demand function be 
fully exercised, but most applications are able to use specific components or parameter subsets.  
For water planning purposes, the most interesting information provided by demand functions are 
estimates of one or more consumer responses to modified driver levels.  That is, it is easy enough 
for planners to observe current levels of water use, but what changes can be expected to happen 
when population changes, economic development takes place, rates are modified, or weather 
diverges from its normal pattern?  Other possibilities include opportunities to value new projects 
or policies with the potential to modify future water use through their impacts on either demand 
or water supply.  

All of these inquiries are better informed when analysts know about demand responsiveness to 
changing conditions, regardless of whether their interests pertain to a given city, a region, a 
basin, or the entire State.  In most of these situations, knowing an expected rate of change (slope) 
or a percentage rate of change corresponding to a 1% change in the driver (elasticity) is a great 
aid.  Because linear and log-linear demand functions are statistically weaker than other 
functional forms in modeling water demand, it cannot be said that water demand slopes or 
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elasticities are truly constant across the range of human experience.  Yet, assuming constant rates 
of change is sufficiently accurate for most applications, especially when they involve small 
deviations from baseline conditions.

Therefore, a prime purpose of water demand estimation is to better understand slopes and/or 
elasticities.  Using derivatives where necessary, slope (mi) and elasticity (εi) for any driver xi are 

defined as

 

m   =    i

! 
 W

cap( )
!xi

and !   =i

! 
 W

cap( )
!xi

•
 W

cap

xi
. [1.3]

The latter expression appears complex, but it is easily understood as the percentage change in 
water use per capita that is consequent to a one percent change in the driver xi.  An advantage of 

elasticity relative to slope is that elasticity is a unitless measure.

Putting the full demand function to work is conceptually straightforward.  Appropriate driver 
values for the location and period (month/year) of interest are substituted into the function and 
W/cap is calculated.  Because some of the demand functions identified in this report are 
algebraically extensive, such calculations can be aided by a spreadsheet program or other 
computerized approaches.  However, the typical challenge is not computational but is to decide 
what driver levels to employ for any given inquiry.  Depending on the setting, the analyst may be 
prepared to use local driver levels for a specific community or perhaps projections for a 
community.  In some instances, average driver levels, or perhaps their ranges, as reported in 
Chapter 3 can assist analysts in making these selections.

Putting individual elements of demand functions to work often commences from a situation such 
as that depicted in Figure 1.1.  Based on present conditions, the analyst can approximately know 
water use (w0 on the vertical axis) corresponding to a normal or current driver level (x0 on the 
horizontal axis).  Because these levels are observable for the issue under examination by the 
analyst, there is no need to use a water demand function to obtain them.  Indeed, the availability 
of this point data may offer considerable advantage in that it is well established and accurately 
known.  Yet, the analyst may be intensely interested in how this demand point will be altered if 
there is a change in exogenous conditions.  If the locale has never had experience with the new 
driver level or, more likely, its experience is confounded by other changing conditions, the 
availability of a slope or elasticity estimate can allow the analyst to extend his/her knowledge as 
lines or curves emanating from the known point.  Use of fixed slopes enables linear extension of 
the known point.  Use of fixed elasticities enables curvilinear extensions.  Whether or not slopes 
and elasticities are positively or negatively signed will determine which direction the line/curve 
extends.  Actual equations for the lines and curves depicted in Figure 1.1 can be readily specified 
using the point-expansion method as long as the analyst knows an (x0, w0) point and can obtain 
an external estimate of slope or elasticity (Griffin 2006, pp. 31-33, 277, 279).  Elasticity 
measures appropriate for Texas urban demand are tabulated later in this report.
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Thus, as a consequence of these opportunities, the availability of slopes or elasticities endows 
planners with simple yet accurate analytical power while facilitating a more formal approach to 
various types of analysis.  The formal approaches use well specified equations, either using the 
entirety of the demand functions given by this report or using two-dimensional point-expansion 
functions computed on the basis of a known point and a slope/elasticity estimate.  The informal 
approach is to use the same fundamental results to obtain specific inferences, such as those 
expressed in these two examples.

1. If the average temperature in July is 1% above the norm, July water consumption will 
increase by __% statewide.

2. If the city raises summer water rates $0.30 per thousand gallons, summer consumption can be 
expected to decline by __ million gallons, implying that utility revenues will increase by __ 
thousand dollars.

The blanks appearing in these two statements can be readily completed when the appropriate 
slopes or elasticities have been acceptably determined by prior research.

Economic Applications

Inclusion of a water price driver in the research reported here enables specialized applications 
pertaining to water policy and project analysis.  When properly used, knowledge of rate 
responses infers consumers' valuations of changes in the availability of retail water.  
Furthermore, if the costs of transforming natural water into retail water can be netted out, then 

 7

x0 driver level

w0

W
cap

Figure 1.1  Point Expansion of Known Demand Information



the consumers' valuations of changes in the availability of natural water can be obtained.  
Because many policies and projects operate by modifying natural water allocations to specific 
uses, the demand information provided here can be a crucial element for measuring the benefits 
of policies or projects prior to their adoption.

To illustrate these possibilities, Figure 1.2 commences with a three-part modification of Figure 
1.1.  First, the axes are exchanged to correspond with the usual economic depiction of demand, 
although this step has no analytical significance. Second, the selected driver is no longer 
arbitrary – it must be retail water price.  Third, W/cap has been multiplied by a population 
estimate to obtain total retail water demand for the area and time period in question.  Suppose 
that a population projection for 2012 has been used.  For this reason the resulting demand 
schedule D is labeled as 2012 demand.  

Demand functions such as D2012 or simply D(w) can be used in rate analyses, and they can be 
used to value changes in the delivery of retail water.  As an example of the latter, suppose that 
water supply is initially restricted to w0 units of water and a public action (policy or project) 
promises to extend the supply to w1.  In this case the total benefits, B, of the supply increase to 
consumers is the area beneath the demand curve and between w0 and w1.  That is,

 
B =      D(w)dw .!

w1

w0

 [1.4]

w
0

w
1

W2012

D2012

MC

MNB

$/W

Figure 1.2  Net Benefit Measurement Using a Demand Function
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This is true because the demand function indicates the marginal benefit of each unit of water.  
While B is the total benefits to be received by consumers, it is not net benefits, which is the more 
important measure of policy/project service.  To estimate net benefits, the costs of processing and 
delivering this added water must be subtracted.  If the curve MC includes all the value-added 
processing costs as performed by the utility in converting natural water into retail water, then     
D(w) – MC(w) is the marginal net benefits (MNB) of retail water.  [Other methods of netting out 
value-adding costs are feasible as well.]  Areas beneath the MNB function specify the net 
benefits of enhancements and reductions in the natural water supply:

 
NB =       MNB(w)dw .!

w1

w0

 [1.5]

Eq. [1.5] is a critical tool for water policy analysis and the cost-benefit analysis of water projects.  
Such policies and projects typically have different effects in differing periods because of rising 
demand and variable weather.  By computing NB with eq. [1.5] for every period of a 
forthcoming planning horizon, such as the next 20 years, and then aggregating these findings 
using a present value formulation, it is possible to achieve a conceptually accurate measure of a 
public action's benefits.  None of this is possible unless water rates are an examined driver for 
water demand.

Having established a working basis for understanding and applying the urban water demand 
functions sought here, the next step is to identify the data collection procedures of this research.
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Chapter 2

Data Collection Methods and Sources

The majority of water usage can be categorized as agricultural, ecological, industrial, or 
municipal.  Methods and patterns of use vary from one of these sectors to the next, so a 
comprehensive picture of water demand in a region is informed by consideration of each sector.  
As introduced in the prior chapter, the present study confines itself to the workings of the 
municipal or urban sector, consisting of residences and the inseparable commercial, public, and 
light industrial activities of towns and cities.

In order to emphasize significant residential water user groups, the domain of this inquiry 
includes those water-providing systems located in Texas serving over 1000 individuals or over 
400 connections in a residential capacity, for which data are available.  Thus, urban demand 
herein is that within communities above a minimum size, excluding systems dedicated to heavy 
industrial and institutional uses such as mines, manufacturing plants, prisons, military bases, 
state and national parks, and country clubs.  Of approximately 4350 systems surveyed by the 
Texas Water Development Board (TWDB), 1406 fit this definition, including suppliers to all 
major population centers.

Water Use Per Capita

The dependent variable for the models developed within this report is the volume of water used 
per capita,W/cap, as derived from annual reports made by utilities to the TWDB.  Section 16.012
(m) of Texas House Bill 1378 (2003) requires systems to report use information solicited by the 
TWDB (Texas Water Development Board 2004).  Information reported by the systems includes 
water use by the entire system, reported for each month, and population served, reported for each 
year and therefore constant for each month of the same year.  These data were provided by the 
TWDB to Texas A&M University for the purposes of this study.  Because the data directly 
reported to the TWDB by cities, towns, and districts may contain anomalies and inconsistencies 
of various types and severities, the original data was processed by the TWDB before it was made 
available for the research reported here.

2003 is the last year for which TWDB water use and population data were available for this 
research.  In considering the latest five years of data, 1999 through 2003 inclusively, the study 
period can be claimed to include conditions of moderately wet and dry years.  A longer study 
period was not adopted because of the difficulty utilities face in providing older water and 
wastewater rate information.

Employing this data, W/cap is calculated for each month as the total use of the system in that 
month divided by the population for the month, which is a linear interpolation of annual service 
population figures.  The constructed variable, W/cap, is assumed to be well related to the 
quantity of water used by the typical household consumer.  The calculated variable may differ 
from the theoretical variable in various respects, including the following.
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• Water utilities record and report produced water, i.e. water pumped from wells and/or 
withdrawn from surface water bodies.  Due to the intermediate storage facilities, such as 
pipes and elevated tanks, the timing of production does not exactly match that of 
consumption.

• As a result of leakage, spills, and evaporation, water is lost in every step of the 
transformation process as utilities convert natural water into the retail water that is received 
by customers (Texas Water Development Board 2005).  The proportion and timing of these 
losses can be difficult to pinpoint.  Rather than attempt to quantify loss, the approach here 
leaves it embedded in the overall modeling of use.

• Although bulk water transfers are reported annually by the systems, the timing of physical 
water releases can affect monthly use readings.  Because these effects are expected to cancel 
each other out in large samples like this one, the net impact of this data error is assumed to be 
an increase in variance but not a change in the magnitude of estimated parameter estimates.

• Utility systems tend to accurately know how many connections or "meters "they serve, but 
they do not possess reliable information on the population of their service area – sometimes 
leading them to report population estimates from the U.S. Census that do not coincide with 
connection numbers.  In cases of clear-cut disparities in the database, the population served is 
reestimated based on the reported number of connections served and the average household 
size of the area.

• Some communities that are primarily residential nevertheless apply significant water 
resources to uses other than residential.  Because such uses are important components of 
water use in the urban sector, applications of this research will prefer to include them as 
though they were residential uses.1

Weather and Climate

When other factors are constant, high temperatures and low precipitation stimulate demand for 
residential water.  Nevertheless, some communities with typically hot, dry weather do not use 
great amounts of water, presumably because consumers have adapted their water-using behaviors 
over their longer experience with scarcity.  For this reason it is desirable to separate normal 
weather patterns from random fluctuations.  This study considers the daily high and low 
temperature and precipitation frequency of each locale averaged over each month, as well as the 
historical annual total precipitation for the thirty-year period from 1971-2000.  Other desirable 
weather variables can be postulated but are not supported by available data.

This data is obtained from the daily readings of active members of the National Weather 
Service's Cooperative Station Network, as compiled in the National Climatic Data Center of the 
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1  Given that TWDB water use data is known to include various water use applications which are strictly 
nonresidential (e.g. government, park, and light commercial uses), the demand analysis to be conducted here is 
incorporating such uses in all aspects of this work.  Hence, the demand analysis is not purely one of residential 
use, and the various drivers are best interpreted as indices of community-wide sensitivities.  This is an advantage 
for most prospective applications of this report's findings, because findings will be combined with other data 
which also embeds nonresidential use.



National Oceanic and Atmospheric Administration, U.S. Department of Commerce, and 
available on their website (www.ncdc.noaa.gov).  Data from one of 141 weather stations in this 
database is assigned to each water system studied, based on geographical proximity and 
completeness of temperature and precipitation records over the horizon of interest.  Weather 
station names for these 141 are listed in Appendix Table A-1.  In most cases, weather values 
assigned to a system apply to a weather station in the same county.  Because temperatures and 
precipitation are recorded daily, values over the month are combined to produce monthly means 
of temperature and monthly frequencies of precipitation.  Data for these stations are over 99% 
complete, but in the rare case of a missing datum, information is substituted from the next closest 
station.

Income

An increase in consumers' real income will typically increase their demand for all normal goods, 
including water (Dalhuisen et al. 2003).  Real income is defined as average personal income 
adjusted for inflation.  Personal income values from the U.S. Bureau of Economic Analysis are 
employed to calculate this measure of expenditure constraint (U.S. BEA 2005).  The BEA 
develops personal income from data collected by the U.S. Census, the Departments of Labor, 
Health and Human Services, Treasury, Defense, and Veteran's Affairs, the Internal Revenue 
Service, and the states; and defines personal income as "the sum of wage and salary 
disbursements, supplements to wages and salaries, proprietors' income with inventory valuation 
and capital consumption adjustments, rental income of persons with capital consumption 
adjustment, personal dividend income, personal interest income, and current personal transfer 
receipts, less personal contributions for government social insurance" (U.S. BEA 2005).  The 
BEA estimates personal income for major urban areas and all counties annually, and we derive 
monthly estimates by linear interpolation of these annual figures.  Communities whose 
representative personal income is not specifically provided by the BEA are assigned the income 
estimate corresponding to the community's primary county.

Personal income is a nominal measure, so it should be deflated by a price index to reflect the 
changing value of the dollar.  For this study we employ the monthly Consumer Price Index (CPI) 
which is defined as "a measure of the average change over time in the prices paid by urban 
consumers for a market basket of consumer goods and services" (U.S. Bureau of Labor 
Statistics).  To deflate nominal income for May of 2001 (I) to January 1999 dollars, for example, 
one would multiply I by the appropriate ratio of two CPIs as follows:

 

CPI Jan99

CPI May01

•  I .
 

[2.1]

Nominal dollar amounts used in this study are deflated by the CPI of urban consumers in the 
southern U.S., using 1982-84 dollars as the baseline (CPIAug83 = 1.0), then converted to 2003 
dollars using the CPI factor of 1.7725, which is the average ratio of 2003 dollars to baseline 
1982-84 dollars.  The applicable monthly CPI factors are listed in Appendix Table A-2.
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Rates

The periodic charges faced by residential water consumers can be separated into meter charges, 
which are invariant to the quantity of water used, and water prices, which are applied to the 
metered quantity of water used by a customer.  Wastewater billing exhibits the same two-
component charge structure as well as other features.  (The terms wastewater and sewerage are 
used interchangeably here.)  Griffin further discusses these components and their economic and 
policy significance (2006, Chapter 8).

Not only do Texas water and wastewater rates range widely in magnitudes, but there is no 
standard framework in place that might simplify data collection pertaining to rates.  Nor is rate 
data centrally collected in Texas.  Some organizations conduct periodic record keeping pertaining 
to rates in major Texas cities, but there are notable omissions in these data and they are 
unsuitable support for the research reported here.  Therefore, original data collection is 
undertaken for this project.  

Data collection procedures must recognize and accommodate a variety of potential rate structure 
types.  Water and wastewater prices can either be constant or vary with the amount used over a 
billing cycle.  In addition to uniform (constant price) rates, there are increasing block, decreasing 
block, seasonal, and conservation rates.  In a few Texas cases, there is a low-use meter charge 
and a high-use meter charge.  More commonly, though, higher charges are levied on greater use 
by dividing the range of conceivable water use into intervals, or blocks, and charging prices 
specific to each block.  If a system imposes an increasing block rate schedule, consumers pay 
more per gallon as their consumption level enters higher blocks.  A more subtle method with a 
slight resemblance to an increasing block rate is to grant a small amount of free water with the 
meter charge, whether the water is actually used or not, thereby establishing a zero volumetric 
price for the lowest levels of water use.  Figure 2.1 shows the rate schedule of a hypothetical 
system with an increasing block rate structure.  Note how the meter charge applying to each 
consumer is displayed; this fee must be paid whether or not the consumer uses any water.

A decreasing block rate schedule reduces the unit price of water at higher consumption volumes.  
Although decreasing block rates were frequently applied for urban water in Texas until the 
1980's (Griffin and Chang 1989), most communities have transitioned to rate structures that do 
not encourage high levels of water use so overtly, and state policy now discourages decreasing 
block rates.  

Wastewater rates may be assessed on the basis of water usage and therefore can resemble water 
rates by incorporating blocks and other nuances.  A wastewater-specific billing practice used by 
many Texas utilities is winter averaging.  Here, a fixed bill is assessed during nonwinter months, 
and this monthly charge is obtained as an average of the customer's winter sewer bills.  Billing 
during winter months is the usual combination of a fixed fee and a volumetric fee based on 
metered water usage.  A similar strategy used in other communities is to establish a maximum 
sewer bill so that wastewater charges do not increase with water usage beyond the prescribed 
maximum.  These approaches limit sewerage fees on water used outdoors, under the presumption 
that water used outdoors will not require collection or subsequent processing at waste treatment 
facilities.  An alternate formulation in some communities is to allow two meters per household, 
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where the second meter is dedicated to irrigation and is excused from wastewater charges.  Other 
communities do not employ either of these methods, meaning that wastewater charges rise 
strictly with metered water consumption.

In light of the many approaches used to assess water and wastewater charges and the fact that 
blocks may be variously defined, it can be difficult to acquire and accurately store or present this 
information for numerous communities.  Other studies have addressed this problem by 
tabulating, for each water supplier, the total bill resulting from discrete monthly consumption 
gallonages (e.g. 5000, 10000, 15000, etc.).  This strategy is straightforward, yet it obscures 
distinctive elements of a billing structure such as the meter charge and the block divisions.  For 
this reason, the approach adopted here is to obtain and computerize the actual rates applied by 
each Texas water system.

The 1406 systems classified above as "urban" received a mailed survey in March 2005 asking 
what rates they had charged city or district residents for household water and wastewater service 
during the period of analysis (1999-2003).  Contact information for these systems was provided 
by the TWDB.  Respondents were invited to complete flexibly designed tables with their water 
and wastewater rates or to respond by returning copies of their 1999-2003 rate schedules.  
Although water and wastewater rates throughout Texas are arguably unprotected public 
information, our survey solicitations promised nonidentification of all returned rate data.  A 
suitably large, postage-paid envelope was included in this mailing.  Communities that had not 
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responded within three weeks were reminded by postcard.  Three weeks after the postcard 
mailing, a rephrased version of the original letter of solicitation was sent to systems that had yet 
to respond.  Again, a form table and an envelope were included in order to ease respondents' 
tasks and maximize the number of responses (Mangione 1995).  Systems whose mailing 
addresses had changed were contacted by telephone and sent repeat mailings.  Appendix B 
replicates the first contact letter, the generic response tables included in the first and third 
mailings, and the postcard reminder.  Unfortunately, some significant Texas cities did not elect to 
respond to this survey and are therefore excluded from the analysis.

Of 1406 systems surveyed, 740 (53%) responded with at least some rate information.  Median 
response time was eighteen days.  The response rate for privately owned water suppliers tended 
to be poor, perhaps because they are more guarded or defensive about their rates.  However, 
privately held water systems in Texas are required to apply to the state for permission to change 
their rates, and data for 42 additional investor-owned systems that did not respond were obtained 
from these records, available at the Austin offices of the Texas Commission on Environmental 
Quality.  Thus, the postsurvey sample contains 782 retail water suppliers.

Responsive systems were smaller than unresponsive ones, averaging 8400 connections compared 
with 10,300 for the entire survey domain, using 1999 information.  However, the disparity is 
statistically insignificant relative to the overall variance in system size across the state.  The 
possibility that systems with higher rates were less likely to respond, although mitigated by the 
large sample size, cannot be discounted.  Unfortunately, a publicly traded national corporation 
managing 150 (11%) of the surveyed systems declined to respond, and the bias engendered by 
this omission is unknown.

Monthly bills (sometimes bimonthly) issued to consumers by water utilities may include charges 
unrelated to water services, and these are not factored into the rate information assembled here.  
Municipal services such as solid waste disposal and street maintenance, state and local taxes, and 
natural gas or electricity charges, comprise this category.  Water-related surcharges due to water 
development investments or contractual purchases from an aquifer authority, a river authority, or 
a water wholesaler can be billed separately to water customers or these charges may be imbedded 
in rates.  To the extent possible, these surcharges and assessments are included in the water rate 
information collected for this research, but data on this facet of pricing may not have been fully 
reported by all communities since it was not specifically mentioned in the survey.  A regulatory 
assessment fee of 0.5% is imposed on all water bills by the Texas Commission on Environmental 
Quality.  Because this fee is uniform across the state, there is no advantage to adding it to the rate 
information collated here.

Compiling the Data

Each observation in this study consists of a month in the history of a water system.  782 systems 
reporting 60 months of history theoretically yields almost 47,000 observations.  Some use and 
rate data are incomplete, so there are fewer total observations. An observation is included in this 
dataset only if (1) the reported water production volume is nonzero, (2) the population reported is 
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greater than one, and (3) the system responded to the survey with rates for the month.  Income 
and climatic data fully covers the sample and do not limit the number of available observations.

Further examination reveals that some observations fulfilling these requirements involve 
questionably high or low use volume values relative to the populations served.  Anomalous data 
may, however, be accurate data.  It is hard to tell.  On one hand, utilities may not track monthly 
water use well or may be careless in reporting, or correct data may be incorrectly keyed into the 
TWDB database.  Population changes may be inaccurately tracked in the data and may inject a 
false appearance of abnormally high or low water use per capita.  On the other hand, water 
supply shortfalls or infrastructure failures may cause water use to be abnormally low for short 
periods.  Major water line breaks can cause water use to be abnormally high.  

While it is difficult and certainly subjective to edit data, a two-stage process is used here to prune 
and hopefully improve the dataset.  The objective is to find and correct obvious errors and to 
exclude errant observations or observations stemming from highly unusual conditions, either of 
which could possibly mislead demand estimation.  Given that the assembled dataset is very large, 
questionable data can be omitted without harming statistical degrees of freedom.  

Stage 1 Corrections and Deletions

A common data error is the omission of one or more decimal places in the reported volume.  The 
converse error of including too many zeroes is less common.  Data reporting problems are 
addressed first by inspecting for obvious anomalies.  Volume per capita is calculated and sorted 
to identify potential errors.  Additional candidates for removal or rechecking are identified by 
evaluating the deviation of each observation from the annual mean for that system.  Under 
normal conditions for a single utility, no single month's use will exceed average use by more than 
200%.  Observations that are suspect on the basis of these criteria are charted to test for 
unexpected or extreme values and randomness in the time series.  Unusual values are corrected if 
the correct value is evident.  1,919 entries (less than 5% of the candidate data) are deleted 
because they indicate physically implausible volumes of water and inconsistency within their 
own series.  Other retained entries are dubiously large or small but consistently so and do not 
admit ready explanation such as an identifiable magnitude error.  These are preserved in the 
dataset.  Emphasis is placed on retaining every observation that could be accurate, even if 
unlikely.  

The resulting stage 1 dataset includes 40,289 observations involving 734 water systems reporting 
an average of 55 months each (4.6 years).  These water suppliers are listed in Appendix Table 
A-3.  Each system-month observation contains the set of use volume, weather, income, and price 
characteristics listed in Table 2.1.  The difference between the mean per capita daily use in the 
stage 1 dataset compared with that in the central 90% of values is 8.6%.  Although some portion 
of this difference may be attributable to data error, it is likely dominated by the asymmetry of a 
distribution bounded by zero on the low end (water use cannot be negative) and unbounded on 
the high end.  The mean is unaffected by outlying values from any single system remaining in 
the dataset.
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Stage 2 Deletions

The 40289-observation, first-stage dataset is employed in the following pretest-assisted 
procedure to examine whether extremely high or low W/cap values have destabilizing effects on 
water demand elasticities.  Beginning with the full dataset, (1) an advanced demand function 
(generalized Cobb-Douglas form) is estimated; (2) elasticities for price, climate, weather, and 
income are computed using demand function parameters and dataset means; (3) the highest 100 
W/cap and lowest 100 W/cap observations are deleted from the dataset, and (4) steps 1-3 are 
repeated.  This process is continued until nearly one-quarter of tail data have been experimentally 
deleted.  The various elasticity findings are plotted over a range extending from 40,289 to 31,289 
observations to examine the sensitivity of results to tail data.  Quite clearly, the tailmost 1000 
observations have a strong and destabilizing effect on these elasticities.  Further examination 
revealed that nine utilities have observations showing up in both 500-observation tails.  That is, 
across all months and utilities in the first-stage dataset, certain utilities have months in both the 
extremely high and extremely low tails.  For this to occur, a utility would have to experience 
months when its average client consumes at least ten times more than is consumed in other 
months.  In most cases, the ratio is far greater than ten.  The full records for these nine utilities 
are again reviewed to see whether the monthly water volume reports may have been blatantly 
concocted.  

On the basis of these investigations, 1000 tail observations are dropped from the dataset.  Next, 
the remaining observations for four utilities of the reexamined nine are entirely dropped.  Three 
of these are because of erratic consumption volumes; one is because nearly half of its data is in 
the 1000 dropped observations.  Finally, only 14 months of a 5th utility's data is omitted, as its 
most apparent data problems are confined to a single period.  As a result of all these 
modifications, the primary dataset to be examined in forthcoming analysis contains 39,145 
observations representing 730 Texas utilities.
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Table 2.1  Dataset Elements

Numeric TWDB Identifier Days without Precipitation

Observation Year Service Population

Observation Month Service Connections

Water Meter Fee Consumer Price Index

Minimum Volume County of Service

Rate Block Minimums 1-7 Winter Average Use

Water Rates 1-8 Volume Used

Sewer Indicator Volume per Capita

Sewer Fee Volume per Capita per Day

Minimum Sewer Volume Personal Income

Sewer Block Minimums 1-3 Household Size

Sewer Rates 1-4 Household Monthly Use

Winter Averaging Months Water Bill

Historical Precipitation Sewer Bill

Average Low Temperature Total Bill

Average High Temperature Average Price per 1000 Gallons



One of the major pieces of information emerging here is the general finding of considerable 
noise in available data.  We are confident that a great deal of this noise remains.

In the next chapter we discuss the picture of Texas water use and its potential determinants that 
emerges from these data.  Then in chapter 4, we derive demand models for the relationships 
between community water use and its climatic and economic drivers.
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Chapter 3

Descriptive Statistics

This chapter describes the quantitative characteristics of the primary components of the stage 1, 
40,289-observation dataset.  These components include service population, water use volumes, 
weather, income, and water and wastewater rates.  All dollar denominations are adjusted to real 
(2003) terms.  In addition to reporting noteworthy details pertaining to the elemental data, 
calculations exploring water/wastewater bills and implied water prices are also performed.  
Wherever statewide "average" conditions are reported here, the information pertains to the 
average water supply system in the dataset, not to the average Texan.

Represented Population

The total population reportedly served by dataset systems is 9.13 million in April 2000.  The 
population of Texas in that month was 20.85 million (U.S. Census).  The implication that 44% of 
Texas is directly surveyed in this report is approximate due to uncertainty in both the census and 
utility records.  The average service population for a single system in that month is 12,985, and 
the median is 3152.  The smallest system population in the sample is 346 people, and the largest 
exceeds one million.1   The median 90% of the sample by service population ranges from 1041 to 
39,869 in April 2000 with a mean of 6894, so a few large systems strongly influence the average 
size estimate.

Water Use

The in-sample volume of water supplied over the five-year survey period is 3.5 trillion gallons, 
averaging 690 billion gallons (2.1 million acre-feet) annually or 152 gallons per person per day.  
Median per capita daily use is 125 gallons.  Figure 3.1 and Appendix Table A-4 indicate the 
variation in average (across all locations) daily use from month to month and year to year.  
Figure 3.2 compares the distribution of average use observations in the most disparate winter and 
summer months, January and August.  Average use dropped from 157 gallons in 1999-2000 to 
148 gallons in 2001-2003.  The lowest average level of use is recorded in January, at 120 gallons 
per person per day.  Median use in January is 106 gallons.  The highest average use is in August, 
at 219 gallons per person per day, with a median use of 186 gallons.  As indicated by Figure 3.2, 
use in the summer is more variable than in winter.  The standard deviation of use in January is 78 
gallons, compared with 145 gallons in August.

Water bills are based on monthly household use rather than daily personal use.  Use calculated 
for the purpose of establishing price multiplies per capita use by the average household size for 
the county (U.S. Census Bureau 2002).  Overall average household monthly use in the sample is 
12,399 gallons, peaking at 18,202 gallons in August and dipping to 9974 gallons in January.
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1  Populations below 1000 are present in the dataset either because of a relatively high ratio of connections per 
capita or because the community subsequently grew to at least 1000 by the end of the study period.
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Typical use in this sample increased slightly from 1999 to 2001, then declined in 2002 and 2003.  
For more information on water use trends in Texas, refer to the annual TWDB Water Use Survey 
(www.twdb.state.tx.us/wus).

Weather and Climate

The monthly average low temperature in the dataset varies from 15.6 to 79.0° F, with a mean of 
55.3°F.  The monthly average high temperature varies from 39.6 to 105.2°F, with a mean of 
78.2°F.  The highest annual average high is 80.0°F in 1999; the lowest annual average high is 
76.9°F in 2002.  The coldest month on average is December of 2000, and the warmest is August 
of 1999.

The historical 30-year average monthly rainfall over the 141 weather stations is 3.2 inches.  A 
typical month during the survey period saw precipitation of over 0.25 inches three times per 
month.  The rainiest year was 2001, with precipitation 3.4 days in a typical month.  In 1999, 
precipitation was recorded in only 2.5 days of a typical month.  Figure 3.3 shows the general 
changes in precipitation and temperature over the study period.  The same information is 
presented numerically in Tables A-5 and A-6 of Appendix A.  Whereas monthly temperature 
extremes are relatively predictable, the occurrence of precipitation is more random over the state 
as a whole.  The wettest month across these Texas stations is May, historically averaging 4.5 
inches over all weather stations.
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Income

The average real (inflation-adjusted) personal income in this study is $26,310 annually, with a 
median of $24,548.  Real income rose in every year except 2002.  Due to variations in reporting, 
this does not imply that the income of any community declined in 2002.  It is also possible that 
communities with lower incomes are more highly represented during that year.  Overall, annual 
personal income averaged by community varied from $10,084 to $48,047.  Figure 3.4 shows the 
distribution of personal income among communities.  Average annual household income is 
$70,625, varying between $37,211 and $128,766.  The monthly water bill represents an average 
0.98% of monthly income.  This proportion is unchanged over the horizon of study; in other 
words, water bills have kept pace with income growth even though the amount of water 
purchased per capita is declining.

Water and Sewer Rates

Water

The rates charged for water consumption vary considerably across the State during the study 
period.  The fixed fee for water service varied from $0.00 to $59.13 per month, averaging $14.35 
with a median of $13.20.  Ten systems (1.4%) did not meter water use, implying that a zero price 
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is applied to each unit of water use.  These systems tend to be small, having an average service 
population of 2819.  For systems that did price water volumetrically, rates for the first 1000 
gallons of metered use ranged from $0.08 to $17.54, averaging $2.41 and with a median of 
$2.25.  Over half (51.4%) of the sample employed a uniform rate; 44.3% employed increasing 
block rates; 3.5% employed decreasing block rates; and 0.8% employed decreasing then 
increasing block rates.  Some systems changed their rate regimes during the period of study.  By 
December of 2003, 343 of the systems studied were utilizing increasing block rates, compared 
with only 281 systems in December 1999.  Figure 3.5 shows how water rates in the sample, 
aggregated by year, vary with volume.  As is true for the other descriptive information appearing 
in this chapter, the calculations underlying Figure 3.5 employ a unweighted average across 
communities, meaning utilities with more clients are not weighted more highly.  The figure 
illustrates a general stability in the shape of the average structure over time and a general rise in 
real water rates – inferring that water rate increases are outpacing inflation.  The figure also 
indicates the dominant effect of increasing block rates given that there are also uniform rates and 
decreasing block rates in the sample.  The pattern of increasing block rates is also indicated by 
Table 3.1, which is aggregated over the sample.
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Sewer

Sewer services were offered by the water systems in 63% of cases, including a small number 
who instituted sewer service during the study period.  The monthly fee for sewerage varied from 
$0 to $77.60, averaging $11.57.  Of those offering sewer service, 74% employed only one 
volumetric rate, 7% employed increasing block rates, and 19% employed decreasing block rates, 
including structures limiting the maximum monthly bill.  The initial volumetric rate for sewer 
service cost ranged between $0.06 and $14 per thousand gallons, averaging $1.75 for metered 
months.  Figure 3.6 shows aggregate sewer rates by volume, indicating the tendency of sewer 
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Table 3.1  Summary of Real Price for Water Service by Block

Rate (dollars per 1000 gallons) Standard
Deviation

Number of
ObservationsBlock Minimum Maximum Mean

Meter Fee 0.00 59.13 14.35 6.66 40289

First 0.08 17.54 2.41 1.18 39732

Second 0.12 17.74 2.72 1.35 19400

Third 0.85 8.64 3.17 1.50 14378

Fourth 0.84 11.09 3.51 1.67 8811

Fifth 0.80 12.19 4.23 2.20 4195

Sixth 0.75 14.98 4.56 2.41 1618

Seventh 1.63 10.85 4.94 2.31 771

Eighth 1.66 9.98 5.37 2.76 478
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rates to decline at high volumes.  45% of observations with sewer service included a ceiling on 
sewer charges including instances of winter averaging.  Table 3.2 describes the range of fixed 
sewer fees and nonzero sewer block rates, suggesting an association between more blocks and 
higher block rates.

Table 3.2  Summary of Real Price for Sewer Service by Block

Rate (dollars per 1000 gallons) Standard
Deviation

Number of
ObservationsBlock Minimum Maximum Mean

Sewer Fee 0.00 77.60 11.57 6.04 25351

First 0.06 14.17 1.82 1.07 18424

Second 0.25 5.27 1.78 1.11 2622

Third 0.45 5.44 1.95 1.12 1291

Fourth 0.67 5.52 1.86 1.18 442

Average Prices

For each observation, applicable components of the typical water/wastewater bill are estimated 
as a hypothetical household consuming at the mean consumption level for that utility and month.  
Volumetric water charges averaged $24.40 per month with a median of $18.95.  Volumetric 
sewer charges averaged $13.56 per month for systems that offered sewerage services, with a 

 25

Water
Volume Charge

Sewer Fee

Sewer Volume
Charge

Water 
Meter Fee

Water 
Meter Fee

Water and Sewer Service Water Service Only

 $64.18 Average Bill (2003 $) $38.23
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 25,350 Number of Observations 14,939

Figure 3.7  Bill Composition by Service Type
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median of $9.36.  Fixed and variable charges for water and wastewater service average $54.56 
per month across the dataset.  The average is $38.23 for customers using no sewerage, and 
$64.18 for those paying for both water and sewerage.  Figure 3.7 shows mean proportions of the 
four components of the water bill for systems with and without wastewater service.

The average price of service faced by consumers is computed as the sum of fixed and volumetric 
water charges plus fixed and volumetric sewerage charges, divided by average use.  Variable 
water charges per 1000 gallons fluctuate between $1.85 in January and $2.12 in August.  The 
average price of water service per 1000 gallons (variable and fixed) averaged $3.78 with median 
$3.32.  Average price of water rose from $3.67 in 1999 to $3.88 in 2003, for an average annual 
increase of 1.41%.  Recall that all of these values are CPI-adjusted, so inflation has been 
removed.  Consequently, rises in water prices are shown to outpace inflation here.  The average 
price for water and sewerage is $5.12 per 1000 gallons, with a median of $4.69 (Table 3.3).

Variation in the real price of water results from differences across systems, periodic changes in 
rate policy, and seasonal shifts in demand to different rate blocks.  Relative variability arising 
from these three effects is captured by the variance (which is the square of standard deviation) of 
the price variable measured in each dimension.  The variance of fixed fees across systems is $43.  
The variance in variable charges is $416.  In contrast, the variance across years is $0.0266 for 
fixed fees, and $0.518 for variable charges.  Variances across months are $0.0026 and $43.61, 
respectively.  Fixed fees do not generally change within a fiscal year.  As expected, these 
statistics indicate that price is much more stable in a given community over time than across 
communities.  

Winter Averaging of Sewer Charges

The sewer bill charged in nonwinter months under winter averaging is approximated by the cost 
of sewerage service for use observed during winter months of the same year.  For example, if the 
sewer bill for May 2002, is based on the use in December 2001, this quantity is represented by 
the average use in December 2002, because of the incomplete availability of data in multiple 
years.

The average price per 1000 gallons consumed ($5.12) is the same for water alone and for water 
and sewerage.  The primary explanation for this anomaly is the discounted water consumed 
during nonwinter months by households subject to winter averaging.  Due to the practice of 
winter averaging, only 59% of monthly sewer bills reflected the quantity consumed in the billed 
month.  Consequently, the average variable sewerage price per 1000 gallons of water 
consumption drops from $1.01 in January to $0.86 in August.  If fixed, variable, and averaged 
costs are considered, the average wastewater price per 1000 gallons is $2.41 in January and 
$1.71 in August.  The practice of winter averaging can counteract the demand effects of block 
rate pricing because water and wastewater charges are experienced by the consumer as a single 
bill.
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Summary Information

Table 3.3 contains descriptive statistics for the major variables assembled into the completed 
dataset.  A correlation matrix showing the extent of linear relationship between each pair of 
variables is provided by Table 3.4.  The magnitude of the largest correlation shown in this table 
is 0.95, indicating a very close relationship between high and low temperature.  Although these 
two variables are expected to be well correlated, regression analysis such as that conducted in the 
forthcoming chapter should not include exogenous variables that are so highly correlated.  Doing 
so causes particular parameter estimates to exhibit unnecessarily high variance without 
contributing to the explanatory power of models.  For this and other reasons, a composite 
weather variable is used in the statistical analysis of the forthcoming chapter.
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Table 3.4  Correlation Matrix

Pop Use Income Price Low High Rain

Population 1.00

Personal Daily Use 0.11 1

Personal Income 0.07 0.04 1

Price – 0.02 – 0.28 -0.01 1

Low Temperature 0.00 0.23 0.02 – 0.10 1

High Temperature 0.01 0.29 – 0.04 – 0.14 0.95 1

Days with Rain – 0.03 – 0.12 0.12 0.07 0.05 – 0.10 1

Table 3.3  Summary Statistics, n=40289

Variable Units Mean Median
Standard 
Deviation Minimum Maximum

Population # 13761 3287 61825 318 1144646

Use (month) kGal 85713 12590 728860 62 4.30 E+07
Personal Daily 

Use
gallons 152 125 109 1.99 1974

Personal Income dollars 26310 24548 6302 10084 48047

Total Bill dollars 54.56 46.03 40.85 7.37 1543.05

Average Price $/kGal 5.12 4.69 3.39 0.26 168.33

Marginal Price $/kGal 3.18 2.88 1.76 0 17.55

Low Temperature ºF 55.3 56.5 14.2 15.6 79.0

High Temperature ºF 78.2 79.5 13.3 39.6 105.2

Days with Rain days 2.9 3 2.2 0.0 13.0
Mean Monthly 

Precipitation
inches 3.2 3.1 1.3 0.14 7.8



It is a perhaps counterintuitive that frequency of rain is unrelated to temperature in the aggregate, 
but this data characteristic makes it meaningful to consider both kinds of weather elements as 
demand drivers.  The next highest correlations in Table 3.4 are the positive correlation of 0.29 
between high temperature and water use and the negative relationship of −0.33 between price 
and water use.  High correlations here are not problematic because they involve the dependent 
variables of the demand function.  Indeed, the negative relation between water use and water 
price highlights a major principle underlying demand estimation.  Elsewhere in Table 3.4 the 
generally low correlation coefficients provide confidence that all variables may have separate 
contributions to make as demand-side drivers and that statistically obtained parameter estimates 
may be relatively stable. 

The next chapter applies the data assembled here to an empirical formulation of the theoretical 
model developed in Chapter 1.  The result will be a set of quantitative relationships between 
personal use and the explanatory variables, ultimately presented as elasticities of demand with 
their standard errors.  Whereas Stage 1 data has been summarized thus far, forthcoming analysis 
relies on Stage 2 data so as to limit the influence of the most suspect data.
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Chapter 4

Econometric Demand Analyses

Using Stage 2 data (pp. 16-17) this chapter explores the mathematical relationships between 
personal daily demand for water service and climatic, income, and price factors.  The 
contemporary theoretical background and issues of water demand analysis are briefly reviewed, 
and then the theoretical model of Chapter 1 is further developed into an empirical form and 
estimated.  The primary data summarized in Chapter 3 are transformed to improve simplicity and 
flexibility, and the transformed variables are subjected to a multivariate linear regression to 
produce parameter estimates and related statistical information.  These parameter estimates in 
turn produce elasticity estimates which are the principal result of this chapter.  Readers who are 
mainly interested in the elasticity findings may wish to advance to p. 36.

Background

Although no prior studies of this type have assembled as many observations as are present in this 
dataset, the methodologies and findings of earlier research guide the present work by indicating 
how such data is best applied in demand estimation.  That is, certain approaches are 
recommended or discouraged by the available body of urban water demand literature, which has 
grown voluminous over the past 25 years.  In this section some of the more relevant suggestions 
of this literature are considered.  Ultimately, all of these components are combined when water 
demand is estimated – inferring that each of the forthcoming subsections is important to the 
results which are ultimately obtained.

Functional Form

In Chapter 1 the general form of the water demand function was given as

 
W

cap
  = f( ... ) + µ [1.2] 

and it was indicated that the functional form of the relation f is likely to be nonlinear.  To 
estimate f we must now select one or more candidate functional forms.  The "best" functional 
form is unknowable, but certain available principles illuminate the decision.

• Statistical results are improved by preserving "degrees of freedom", defined as the number of 
observations minus the number of estimated parameters, which tend to be consumed by more 
complex functional forms.  In this study, however, the availability of a large dataset renders 
this issue irrelevant.

• "Simple" functional forms have the unfortunate consequence of imposing considerable 
structure upon the estimated model.  More "flexible" functional forms are less restrictive, 
thereby allowing the data to be more influential in producing results.  Other things being 
equal, greater flexibility is desirable.  Some of the structure imposed by inflexible forms may 
even be regarded as inappropriate for the setting under study.  For example, a linear function 

 29



imposes at least two disputable properties on a water demand function: (1) a $0.25 per kGal 
increase in the price of water has the same impact on consumption regardless of whether the 
price is initially $1 or $10 per kGal and (2) at some level there is a "choke" price (a price 
above which there will be no water demanded).  Imposed properties such as these may 
constrain the ability of data to identify demand.  While all conceivable functional forms are 
associated with some structural impositions, less structure is better.  Functional forms with 
fewer parameters tend to be less flexible.

• A popular, yet inflexible functional form in the water demand literature is the double log 
model.  Its popularity stems from convenience in use rather than its accuracy in estimation.  
The coefficients of the double log model are elasticities, so further computing of elasticities 
is unnecessary.  Therefore, one of the rigidities imposed by the double log model is that the 
elasticity of each exogenous variable is constant across all possible values of all variables.  
General results from available water demand literature are not supportive of constant 
elasticity models when they are contrasted to more flexible forms.  For example, Dalhuisen et  
al.'s investigation (2003) over many previous studies indicates that elasticity estimates are not 
constant in general, but vary with income, and that price elasticity in particular will be 
reduced at some income level.  Findings such as these cast doubt on the appropriateness of 
the double-log form.

• Most published examples of urban water demand estimation report estimates for multiple 
functional forms.  Linear and double log models are normally among those reported.  In 
some situations, use of these two functional forms is necessary because the dataset contains a 
limited number of observations, and the desire to preserve degrees of freedom urges the 
adoption of simplistic functions.  In other cases, reporting of linear and double log models 
occurs as a research tradition, in spite of the inflexibility of these two forms.

• Other functional forms sometimes employed in the urban water demand literature include 
log-linear, linear-log, translog, generalized Cobb-Douglas, Stone-Geary, and augmented 
Fourier forms (Arbués, García-Valiñas, and Martínez-Espiñeira 2003; Griffin and Chang 
1991; Renzetti 2002).

Consideration of these matters leads us to favor a flexible functional form for the central model 
of this research.  Therefore, a slightly modified version of the generalized Cobb-Douglas (GCD) 
functional form is selected here.  This form is relatively flexible, yet not too cumbersome for 
application.  It performed well in prior Texas work in that it best matched the results of the 
extremely flexible yet difficult to apply augmented Fourier form (Griffin and Chang 1991).  The 
GCD form "nests" the double-log model as a special case, so it is necessarily more flexible than 
the double-log form.  Prior experience with the translog form using 1980's data caused it to be 
rejected, because it did not exhibit the seasonality of price elasticity accurately.

Data Levels

Urban water demand estimation can be pursued using either microdata or aggregate data, as 
noted in Chapter 1.  Microdata involves observations on individual households while each 
observation in aggregate data identifies summary data for a group of households – usually an 
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entire community of households served by a single water utility.  Explanatory variables such as 
lot size, number of bathrooms, and appliance ownership are conceivable for microdata, whereas 
aggregate data calls for more broadly based variables such as those applied in this study.

In addition, data may be cross-sectional, meaning that it spans households in the case of 
microdata or communities in the case of aggregate data, or data may be time-series.  Purely 
cross-sectional data has no time series dimension to it; that is, all observations are for a single 
period, such as a single year.  If the cross section is large – meaning that a large number of 
households/communities are included, the data may be able to support a relatively deep 
examination of water demand.  When different households or communities operate under 
disparate conditions and have the latitude to adjust their behaviors to the particularized 
conditions they face, data from these experiences can reveal much about the nature of water 
demand.  By taking advantage of these widely ranging conditions, the water demand functions 
that underlie all of these households/communities is illuminated.

Pure time series data has no cross-sectional dimension.  All observations are then for a single 
household (microdata) or a single community (aggregate data).  By itself, time series data has a 
weak ability to disclose important aspects of water demand (Arbués, García-Valiñas, and 
Martínez-Espiñeira 2003, p. 89), because many exogenous (driver) variables may change very 
little or only steadily over time, thereby providing a limited picture of potential consumer 
responsiveness.  On the other hand, time series data tends to improve the variety of weather 
conditions that are present in a dataset.  Thus, time series data is appropriate when a purpose of 
demand estimation is to discover responsiveness to weather conditions.

Data employed in this study has both cross-sectional and time series dimensions.  Such data is 
known as pooled data or panel data.  Pooled data from the widest practical cross-section is 
pursued in this research for the reasons just acknowledged.  A time-series dimension is also 
pursued to examine the seasonality of water demand, as well as to help disentangle the effects of 
weather-related determinants from the other exogenous variables.  Appendix D presents an 
advanced use of panel data to increase the precision of estimated parameters1.

Cross-sectional data presents the best opportunity to discover the long-run impact of changes in 
nonweather drivers.  As the scarcity of water increases, new conditions will encourage people to 
change not only their water use but also the water-using durables they possess in their 
households.  These durables include modifiable items such as appliances, pools, lawns, and 
landscaping (Griffin and Mjelde 2000).  Because these types of goods are slowly altered in 
response to rising water scarcity and because it is the variety of situations arising in cross-
sectional data that may allow these differences to be witnessed, it is appropriate to rely on cross-
sectional data to acquire a longer run analysis of demand.  
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1   Use of formal panel methods require advanced econometric methods (not ordinary least squares) and, more 
importantly, a balanced sample – meaning that all cross sections must have equivalent time series.  
Accomplishing this balance disqualifies a sizeable portion (47%) of this study's dataset because missing data 
means that some utilities have less than 60 months of observations.  Since the panel model results of Appendix D 
result in small modifications to the OLS results developed here, the improvements made available by panel 
methods here are slight relative to the disadvantages (complex technique and data loss).



Price Specification

The water demand literature's most discussed issue is the selection of a specification for water 
price.  Given that water pricing is sometimes complex, involving both flat and volumetric 
components and often block rate elements too, any single water price variable has to be regarded 
as a proxy or index of the true pricing policy.  A further complication is that households tend to 
possess imperfect knowledge about the rate structure they face.  They generally do not know 
rates, block divisions, or even their own consumption level as it is occurring.  Furthermore, in the 
case of aggregate data such as that employed here, it should be acknowledged that the data 
pertains to an average or "representative" consumer when the actual situation may be one of 
different households facing different rates because their consumption amounts place them in 
different blocks.

The two prime candidates for a price variable are average price (AP) and marginal price (MP).  
Whereas AP is a household's total bill divided by the number of thousand gallons consumed, MP 
is the cost of an additional thousand gallons at the prevailing level of consumption.  The 
specification used in this study is AP.  The MP specification is clearly appropriate in many kinds 
of nonwater demand models and conforms to economic theory if restrictions such as full 
information are achieved.  However, water service is not purchased under full information 
(Gaudin 2005; Carter and Milon 2005).  Whereas most consumer goods are labeled with prices at 
the time of sale, water faucets and other appliances do not display water price or meter 
information as they are operated.  Even when an after-the-fact water bill arrives, its components 
are not transparent to all consumers, and bills are often not large enough to inspire further 
investigation or price discovery by consumers.  Because of the relative remoteness of the 
consumer from MP, we believe AP is a more accurate representation of the price experienced.  
AP also embeds meter fees and block rates, neither of which is reflected in MP.  Thus, AP is the 
proxy employed here.  This specification incorporates both water and wastewater bills as 
recommended by available literature.

Other studies have employed discrete-continuous price or an income-adjusted price.  It is also 
possible to use multiple price variables in the same model, usually for the purpose of statistically 
verifying the preferred price specification.  Such research is well reviewed by Renzetti (2002, pp. 
22-25) and Arbués, García-Valiñas, and Martínez-Espiñeira (2003, pp. 84-85).  When a multiple 
price approach was performed using 1980's Texas data, AP was determined to be the statistically 
preferred specification (Griffin and Chang 1990).

Weather Specification

Urban water demand studies have addressed weather dependencies in various ways.  These 
methods include the division of datasets into like-weather periods (e.g. two seasons or twelve 
months) and the incorporation of weather variables such as temperature and rainfall.  More 
elaborate variables have also been created in attempts to model the greater sensitivity of outdoor 
water use occurring during summer months.  Some of these efforts have introduced new 
variables defined as "effective rainfall," "moisture deficit," or "sprinkler need" (Renzetti 2002).
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Recognizing prior findings and suggestions, a long-term and a short-term weather variable are 
utilized here.  The long-term variable is the 30-year average monthly rainfall experienced by the 
community.  This variable represents an explicit accounting for the range of expected weather 
conditions across Texas.  Communities that habitually experience wetter weather are likely to 
have conditioned their water-use behavior to conform to this situation.  For example, the 
selection of landscape plantings and irrigated lawn area are affected by long-term weather 
expectations.  Similarly, the households of typically arid communities are more likely to have 
made adjustments favoring low water use possessions and behavior.

Even though households can be expected to adjust their water use practices and durable 
possessions to normal long-term climate expectations, deviations from these conditions can have 
a large impact on water use, especially during summer months.  For this reason, inclusion of a 
short-term weather variable is also desirable.  Because data here is monthly, this weather variable 
must likewise be monthly.  Many possibilities are imaginable, but few are supported by available 
data since widely available monthly data are limited to temperature maximums and minimums 
and precipitation information.  The variable used here is a weather composite labeled as C.  
Rather than utilize precipitation amounts, we incorporate "number of days in which a significant 
rainfall did not occur" where a significant rainfall is defined as 0.25 inches.  This formulation 
models the "mainly psychological" response that can appear in the water use behavior of 
households (Arbués, García-Valiñas, and Martínez-Espiñeira 2003, p. 87) and it controls for the 
different lengths of months.  For example, March is 6.9% or 10.7% longer than February 
depending on whether it is a leap year.  We multiply days without rainfall by the average daily 
temperature occurring for the community/month in question.  This particular weather composite 
has not been applied in research outside of Texas, but it was the most statistically significant 
driver when 1980's data was originally investigated (Griffin and Chang 1989).

Estimation Methods

Although many urban water demand studies have used ordinary least squares (OLS) regression 
techniques, a good deal of this research has employed more advanced methods.  The more 
advanced approaches are commended by the peculiarities that often arise for this sort of data.  
The primary concern is that OLS employs an assumptive base that includes elements such as (1) 
the endogenous variable (W/cap) being dependent on the exogenous variables but not vice-versa 
and (2) the degree of randomness being constant throughout the data.

In block rate structures and average price specifications, assumption (1) is unsatisfied, thereby 
raising issues of "simultaneity" or "endogeneity" (Renzetti 2002).  The result may be that bias is 
introduced in coefficients estimated via OLS procedures.  If this issue is suspected to occur in the 
dataset of interest, then regression techniques such as instrumental variables (including two-stage 
procedures) may be applied (Kennedy 2003).  A pretest utilizing the double log specification 
failed to reject the hypothesis that the price elasticity of demand for uniform rates is identical to 
that for block rates in the present sample.  That is, a high degree of simultaneity bias was not 
detected in the data.
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If the random error of each observation is not of the same magnitude, a condition known as 
heteroskedasticity, the standard error of OLS estimates may be overstated.  A multi-stage 
generalization of OLS is one way to address this sort of imprecision.  The parameters themselves 
will not be biased by heteroskedasticity; thus it is a less serious issue than simultaneity.  OLS is 
adopted in the analysis below, and the precision gains sought from more generalized estimation 
procedures are derived instead from the flexible GCD form and the breadth of primary data.  The 
previously mentioned panel technique of Appendix D uses an alternative to multi-stage 
estimation to investigate whether there are disadvantages to OLS estimation using the data 
assembled in this study.

Variable Specifics

R

Weather is sufficiently important to advise a two-variable strategy, as noted above.  The long-run 
variable is R, defined as average inches of precipitation for the 30-year period 1971-2000.  
Monthly averages are used, so for any given community this variable changes from month to 
month but not year to year, meaning that it takes on twelve values for each utility's 60 (or fewer) 
observations.  

C

The short-run weather variable is a composite called C, and it embeds average daily temperature, 
rainfall occurrences, and month length.  It is defined as follows.

 
C  =

Tempmax Tempmin+

2

days without precipitation

1000
•

 
[4.1]

Division by 1000 was not applied in the prior Texas research, but it scales this variable to a range 
similar to the other variables here.  

I

Income, denoted I here, is real personal income in $10,000 units.

P

As noted above, the average price (P) specification is used here.  If the utility also provides 
wastewater services, then sewer bills are included in the P specification.  P is the real average 
price paid per 1000 gallons.  

S

To further differentiate the absence or presence of wastewater collection/treatment, an indicator 
variable S (for sewer) is introduced.  S=0 for those systems offering water service only, and S=1 
for systems offering water and wastewater service.  The purpose of this binary variable is to 
investigate whether there may be a statewide difference in demand behavior, depending on 
whether sewerage services are available.  Since locales without community sewerage are 
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different in many ways from areas possessing sewerage, any inferences from demand analysis 
using this variable should be carefully stated.

Together with the formative elements of Chapters 2 and 3, the above descriptions and definitions 
fully define the completed dataset to be used in the immediately following econometric analyses.  
This dataset is downloadable at http://waterecon.tamu.edu/udemand.html.

Estimation Results

The generalized Cobb-Douglas (GCD) functional form is nonlinear in parameters, so a 
logarithmic transformation is required to perform OLS.  Once the variables described above are 
substituted and a logarithm is taken of both sides, the following function results.2  

 
W
cap

ln )( = ß0 + ß1•lnC + ß2•lnR + ß3•lnI + ß4•lnP + ß5•S + ß6•ln(C+R)

 + ß7•ln(C+I) + ß8•ln(C+P) + ß9• S•lnC + ß10•ln(R+I) + ß11•ln(R+P)

 + ß12•S•lnR + ß13•ln(I+P) + ß14• S•lnI + ß15• S•lnP + ν [4.2]

There are 15 beta (ß) coefficients to be estimated for this model.  Table 4.1 shows the 
correlations of the log-transformed independent variables and the interactions incorporated in eq. 
[4.2].  Some of these correlations are higher than the simple correlations given for untransformed 
data in Table 3.4, meaning that some imprecision will occur for OLS-obtained parameters of the 
estimated equation.  This condition is anticipated since the interaction terms are combinations of 
other variables.  While this sort of correlation is reason for some caution, its consequence – 
misestimation of individual ß's – is not likely to bias slope or elasticity estimates 3 because 
results such as these are combinations of parameter estimates from eq. [4.2].  

Coefficient estimates and general statistics for the GCD "full-data" model (eq. [4.2]) are given by 
Table 4.2.  For interested readers, linear and double-log functions are estimated and the resulting 
models are reported in appendix Table C-1, but they will not be further discussed here except to 
observe that the adjusted R2 and mean squared error statistics of model fit confirm the expected 
preference for the GCD model.  All 39,145 observations are employed to obtain the models 
summarized in Tables 4.2 and C-1, so they are referred to as full-data models in this report.  Each 
parameter of the GCD model is at least 99% significant.  

Twelve "monthly-data "GCD models have also been estimated by using data from each single 
month (e.g. January) to obtain alternative sets of parameter estimates.  These models are not 
tabulated in this report, but they are used in some of the forthcoming calculations to investigate 
the stability of results.  
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2  Because the logarithm of zero is undefined, the binary S variable is introduced multiplicably in this function and 
it is not transformed by logarithm.

3  Errors of collinearity within families of regressors tend to "even out" at the slope or elasticity level, inferring that 
collinearity has greatly reduced consequences for applications that employ combinations of ß's such as slopes 
and elasticities.
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Based on the statistical evidence of Table 4.2, the GCD model demonstrates a strong 
correspondence between water use per capita and the selected set of exogenous variables.  The 
adjusted R2 statistic is relatively high for cross-sectionally dominated data and provides 
confidence regarding the overall merits of the model.  The high statistical significance of the 
parameter estimates infers that Texans do make different choices about how much water to 
consume based upon the climates they live with (R), the weather they experience (C), average 
income in their counties (I), the pricing signals they face (P), and whether or not their locale is 
similar to areas that receive wastewater services from their water provider (S).  These 
distinctions begin to indicate that water use is likely to be determined by many varying 
conditions across the State.  

Elasticity Results

Recall that an elasticity is unitless as well as simple to understand.  An elasticity of –0.5 means 
that a 1% rise in the level of the driver will decrease water use per capita by 0.5%.  In the 
remainder of this chapter, discussion of various elasticities is the main avenue for exploring and 
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Table 4.2  Parameter Estimates for the GCD Regression (n=39145)

Parameter Coefficient* Standard Error

ln C 0.189 0.0264

ln R 0.339 0.0233

ln I 0.541 0.0624

ln P -0.448 0.0331

S 0.393 0.0252

ln (C+R) -0.219 0.0487

ln (C+I) 0.316 0.0699

ln (C+P) 0.909 0.0597

S • ln C -0.0699 0.0156

ln (R+I) -0.260 0.0550

ln (R+P) -0.526 0.0416

S • lnR 0.0903 0.00861

ln (I+P) -0.800 0.0637

S • ln I -0.268 0.0185

S • ln P 0.144 0.00915

Constant 5.58 0.0674

Adjusted R2 0.49

(Mean Squared Error)0.5 0.36

*All parameter estimates significant at 99% confidence level.



demonstrating the estimated model of Table 4.2.  Because individual model coefficients are not 
readily interpretable, we use the elasticity definition (eq. [1.3]) to compute elasticity functions 
for each of the continuously valued drivers (R, C, I, and P).  Because of the flexibility of the 
GCD functional form, each of the relevant elasticities is functionally dependent on the 
coefficients reported in Table 4.2.  Also, because each elasticity is not constant across the data 
range, complete computation of a numeric elasticity cannot be performed until a level is selected 
for all drivers (R, C, I, P, and S).  Except when noted below, mean values from the dataset are 
used for the tabulated elasticities that follow.  

Table 4.3 exhibits basic annual elasticity estimates derived from the full-data GCD model as well 
as S=0 and S=1 partitions of the data.  These include computations made at mean values for each 

of the four exogenous variables as well as computations towards the edges of data ranges.  

The uppermost section of Table 4.3 is obtained using the GCD model of Table 4.2.  Elasticities 
are presented for each driver except S.  Elasticity values are computed for mean values of all 
variables including S (even though S only takes on 0 or 1 values in the data).  To gain 
perspective on the range of sensitivities to demand drivers, elasticities are also computed for one 
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Table 4.3  Demand Elasticities
Elasticity

Evaluated at Variable's

Variable Mean
Standard 
Deviation Mean – S.D. Mean Mean + S.D.

For S = 0.628

C 1.82 0.43 0.38 0.43 0.48
Rainfall 2.95 2.23 0.21 -0.07 -0.21
Income 2.63 0.63 0.20 0.16 0.12
Price 4.96 2.24 -0.47 -0.55 -0.59

For S = 0 (Water Service Only)

C 1.81 0.43 0.48 0.46 0.44
Rainfall 3.03 2.24 0.20 -0.17 -0.33
Income 2.51 0.52 0.44 0.33 0.24
Price 4.89 1.97 -0.58 -0.65 -0.70

For S = 1 (Water & Wastewater Service)

C 1.82 0.43 0.36 0.43 0.49
Rainfall 2.90 2.22 0.23 -0.03 -0.15
Income 2.71 0.68 0.08 0.06 0.04
Price 5.01 2.38 -0.41 -0.48 -0.53



standard deviation on either side of the variable means.  These "off-mean" evaluation points use 
mean values for variables other than the variable of focus.  For the most part, the "mean +/-1 
standard deviation" provides a reasonable approach, with the possible exception of the rainfall 
variable.  The standard deviation of rainfall is large in comparison to its mean (because rainfall is 
not normally distributed about its mean).  Consequently, rainfall's mean minus its standard 
deviation is a very small value (less than 9 inches per year) that is not characteristic of many 
Texas utilities.

The lower sections of Table 4.3 repeat these elasticity computations using alternative population 
sets.  The full-data, 39,145-observation dataset is separated into its S=0 and S=1 subsets (14,548 
and 24,597 observations respectively).  New GCD models are estimated for each (reported in 
appendix Table C-2), and new means and standard deviations are obtained to generate alternative 
outlooks on demand determination.  Thus, differences among the three groups of results reported 
in Table 4.3 arise both from the use of different model coefficients and different means and 
standard deviations.  Note that population means and standard deviations are not markedly 
different and that elasticity signs and magnitudes are generally alike.  The largest discrepancy 
pertains calculated income elasticities.  Further observations emerging from Table 4.3 will be 
discussed in the subsections to follow.

Table 4.4 reports complete sets of monthly elasticity estimates using two alternative modeling 
options.  In the upper portion of the table, monthly means are substituted into the overall GCD 
model (Table 4.2) to obtain elasticity estimates for each month.  In the lower half of the table, 
monthly means are substituted into twelve monthly GCD models4 to obtain comparable results.  
Throughout this table, elasticities are computed for the fictitious average utility (S=0.628). 

A binary variable does not properly have an elasticity, but the effects of "sewerage presence" can 
be seen in Table 4.5.  Table 4.5 uses different monthly GCD models to examine the differing 
demand responsiveness for the two types of utilities present in the data sample.  Monthly 
elasticities are computed for those utilities engaged only in water service as well as for those 
engaged in both water and wastewater service.  Water-only means and models are on the left side 
of Table 4.5.  The upper half of Table 4.5 employs the same GCD models (12) for both left (S=0) 
and right (S=1) sides, and it uses separate subsample means (for water-service-only and water/
wastewater partitions) in making the elasticity calculations.  The lower half of Table 4.5 uses 24 
distinct GCD models5 by splitting the dataset along both service (water, water/wastewater) and 
month delineations.  

Regarding the left versus right sides of Table 4.5, interpretation of these differences should 
acknowledge the many differing characteristics of locales that do/do not possess centralized 
wastewater collection and treatment.  Because water-service-only utilities tend to serve rural and 

 39

4  These twelve monthly models result from regression upon data only for a given month and therefore are based 
on a division of the 39,145 observations into twelve separate datasets.  Regression statistics for these models are 
not tabulated in this report.

5  Regression statistics are not reported for these 24 models.
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Table 4.4  Monthly Demand Elasticities (at S=0.628 and monthly means)

C R Income Price

Using the All-data GCD Model

Jan 0.360 -0.030 0.178 -0.531

Feb 0.353 -0.011 0.179 -0.544

Mar 0.404 -0.109 0.192 -0.510

Apr 0.417 0.023 0.136 -0.600

May 0.476 -0.118 0.157 -0.538

Jun 0.486 -0.173 0.170 -0.506

Jul 0.502 -0.022 0.108 -0.611

Aug 0.508 0.002 0.093 -0.626

Sep 0.476 -0.095 0.145 -0.550

Oct 0.446 -0.108 0.168 -0.529

Nov 0.393 -0.082 0.185 -0.519

Dec 0.368 -0.088 0.197 -0.501

Average

Annual
0.442 -0.067 0.153 -0.552

Using 12 Separate Monthly GCD Models

Jan -0.230 -0.096 -0.059 -0.531

Feb -0.153 -0.070 -0.091 -0.550

Mar -0.097 -0.147 -0.030 -0.509

Apr -0.057 0.007 -0.178 -0.659

May 0.150 0.026 -0.123 -0.688

Jun 0.235 -0.413 0.124 -0.568

Jul 0.634 -0.237 0.377 -0.621

Aug 0.249 -0.236 0.400 -0.695

Sep 0.684 -0.146 0.317 -0.617

Oct -0.118 -0.153 0.083 -0.611

Nov -0.019 -0.129 0.044 -0.542

Dec -0.109 -0.152 -0.136 -0.508

Average

Annual
0.143 -0.155 0.093 -0.601
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possibly urban fringe communities, which differ in a variety of ways from urban and town 
environments, there are many factors distinguishing these two groups. 

Taken together, Tables 4.4 and 4.5 shed light on the alternative structural assumptions and their 
effects as well as the stability of results in the face of alternative modeling selections.  

Weather and Climate

From Table 4.3, annual demand elasticities with respect to C are positive, inferring that periods 
of higher temperature and less frequent precipitation encourage increased consumption of water.  
These results conform to theoretical expectations about the influence of the weather on water 
use.  For W-only utilities (S=0), demand response to C is generally even across the range of C 
levels, but W/WW utilities (S=1) tend to experience greater demand responses to C as C 
increases.

From the monthly results of Table 4.4, the all-data model differs from the month-specific models 
in estimating the seasonality of C elasticities.  Because it pools all data and thereby forces some 
homogeneity upon demand responses, the all-data model indicates a flowing reaction to C, 
peaking in the summer.  There is less structure (and much less data) in the individual monthly 
GCD models, so seasonal C responses are not smoothly changing from month-to-month, and C 
elasticity is sometimes slight or even negative in winter months.  Peak responses to C are seen in 
the summer under all model options.  Table 4.5 confirms these patterns within both W-only and 
W/WW partitions.  As a result of these analyzes, we feel that the true pattern of responses to C 
are reasonably depicted by the monthly models (Table 4.5 and lower half of Table 4.4), but these 
responses are too erratic to be applied without first smoothing them in some formal fashion 
(which is not pursued here).  

Throughout most of the modeling approaches reported in Tables 4.3-4.5, the demand response to 
historical precipitation (R) is mildly negative.  Hence, locales that are accustomed to drier 
weather tend to use more water, but not markedly more.  This result tends to be exhibited by both 
annual and monthly models.  One interesting exception is displayed in the "Mean–S.D." column 
of Table 4.3.  The indication here is that the driest communities may actually increase water use 
if they were to experience a shift towards permanently wetter weather.  A reasonable explanation 
for this phenomena is that wetter weather can encourage shifts in the water-using durables held 
by consumers.  For example, wetter weather can encourage a shift to lawns and landscapes 
which are more water intensive.  Similarly, permanent shifts to drier weather may evoke long-
term responses in the direction of reduced commitments to outdoor water use.  To the extent this 
may be true, it would seem that consumers in more arid regions make progressively greater 
adaptations to their climate conditions.  The fact that consumers make such changes is additional 
evidence of the controllability of water use.  It even indicates where things may progress should 
rising scarcity greatly increase water rates.

Income

If one examines only the annual results of Table 4.3, it appears that water demand is weakly 
responsive to personal income.  Income elasticity has the expected positive sign here, but it is 
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small, especially for utilities offering both water and wastewater services.  Recall that income 
data is specified at the county level.  Hence, utilities operating in the same county are treated as 
having the same income, even though any given county is likely to contain both high- and low-
income households.  To the extent that like-income households may congregate in the same 
communities, different utilities in the same county may be serving differing client groups (in 
terms of income).  This issue is more problematic for large-population counties where 
communities may be very diverse and multiple utilities may be operating.  Affluent households 
may compose a smaller proportion of one utility's customer base than another's, yet a county-
level income variable cannot capture the difference.  Given this general weakness of income 
data, a weaker than actual performance might be expected for the income driver, especially for 
S=1 utilities (which are more likely to lie in urban counties where other utilities are also 
operating).

Examination of the monthly results – contained in the lower half of Table 4.4 and all of Table 4.5 
– reveals two additional outcomes.  First, in the cooler six months of the year, income elasticities 
may be near zero or even negative.  Second, income elasticity in summer months well exceeds 
that of other months.  

With regard to the first of these two observations, negative elasticities arise only for the S=1 
utilities for which income data may be more poorly indicative of a utility's actual personal 
income level.  Although we have not calculated confidence intervals for any of these elasticity 
estimates, some of these S=1 monthly income elasticities may be insignificantly different from 
zero.6

For the second observation pertaining to heightened summer income elasticity, such a finding is 
theoretically consistent with the idea that much of summer water use is more discretionary than it 
is during the remainder of the year.  Given data weaknesses, it is suspected that the summer 
income elasticities determined from the monthly models may even be understated.

Price

All three tabulations of price elasticities indicate that demand responses to price are consistent 
and of the anticipated sign.  Across all service partitions and monthly delineations, elasticities 
range from approximately –0.48 to –0.8 when evaluated at data means.  

With respect to service partitions, water-service-only utilities encounter higher magnitude price 
elasticities, at about –0.7 annually, than do water and wastewater utilities (Table 4.5).  Price 
elasticities for water and wastewater utilities are about –0.54 on an average annual basis.  

Seasonality in price elasticity is very evident.  As expected, the greater discretionary flexibility of 
summertime water use gives rise to more pronounced demand responses to price.  Across both 
service partitions, summer price elasticity is higher in magnitude by about 0.15 over winter price 
elasticity.  
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6  For the S=1 annual model, Table C-2 shows that two of the four income-using parameters are statistically 
insignificant from zero, whereas all parameters are significant for the S=0 model.  



In most ways, the price-related results of these demand models are more definitive than those 
emerging from weather, climate, and income drivers.  Clearly, community water demand is price 
responsive.  We believe the performance of the price variable is assisted by its data origins.  Both 
the water consumption information and water rate information of this study come directly from 
surveys of water utilities.  Other data used in this analysis comes from area sources that may not 
match well with the individual water utilities.  Weather data comes from nearby weather stations, 
of which there are only 141 with sufficiently complete records.  Income data pertains to the 
county in which the utility primarily operates.  Thus, although average water price is a proxy for 
the complete rate system actually faced by consumers, the price variable is well matched to the 
individual utilities.

Given the demand functions that were theoretically diagrammed in Chapter 1, it is potentially 
reaffirming to graph actual demand curves emerging from the empirical results obtained here.  
Lots of possibilities are available, because of the many model variants examined for Tables 4.3 - 
4.5.  However, in order to concretely juxtapose the range of experiences disclosed in these 
results, we can select January and August demands for both water-service-only and water/
wastewater utilities.  Figure 4.1 precisely illustrates these four separate demand functions using 
the same mean variable values and regression coefficients that produce the upper portion of 
Table 4.5.
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Figure 4.1 clearly exhibits the anticipated shape and negative slope of all four demand functions.  
August demands are rightward of January demands, as expected.  August demands appear to be 
more price responsive than January demands when compared at equivalent prices.  Water 
demand in S=0 utilities is less than that of S=1 utilities.  Note also that as prices increase for 
either utility type, August demands appear to be converging in the direction of January demands 
– indicating that consumers are better able to reduce summer water use as water costs rise.  Yet, 
it is quite evident that even January demands are price responsive.
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Chapter 5

Concluding Comparisons

Rather than summarize findings at this point, we conclude with a few reflections pertaining to 
the changes that have occurred in Texas over the last twenty years.  Readers wishing to obtain an 
overview of this report can rely on the Executive Summary commencing on p. ii.  Also, keep in 
mind that methodological guidance for some water planning applications of Chapter 4 results is 
overviewed in Chapter 1.

The 1981-85 Texas Study

In the late 1980's the Texas Agricultural Experiment Station sponsored a study similar to the one 
reported here.  This earlier project was documented by a report and two consequent articles 
(Griffin and Chang 1989, 1990, 1991), all of which are downloadable1.  The current study 
parallels the 1989 one relatively well, enabling some insights about the changing nature of urban 
water demand and water pricing in Texas.  The most notable comparisons are reported below.

The 1980's study compiled very similar data to that of this 2006 report.  Monthly data from 
1981-85 were used, so a 60-month record was established.  Data were similarly collected, 
including the use of TWDB water use data and a mailed survey to obtain rate information.  The 
eventual dataset included 221 Texas water systems, yielding a 12050-observation dataset.

The most interesting comparisons of these two studies may lie in the areas of water use, water 
rates, and estimated demand elasticities.  Yet, one must be mindful that the two studies involve 
different (though overlapping) cross sections, not just different time periods.  Therefore, not all 
of the distinctions between the results of these studies stem from modified consumer behavior 
and increased water scarcity.

Comparing Consumption and Rates

Figure 5.1 is primarily a replica of Figure 3.1 with the years 1981-85 added.  Here, the Stage 2 
dataset is employed, and utilities are weighted by population.2  All of the dashed lines represent 
1981-85 years with no attempt to identify the individual years.  There are 10 individual years 
displayed as well as average (bold) water use for each of the two periods.  Observe that water use 
during the more recent five-year study period is lower.  However, the more exhaustive coverage 
of this study means that more communities are included and average community size is lower.  
Whereas the average system-month of the 1980's study involved water service to 23,600 people, 
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1 A later study employing more contemporary econometric techniques, but also using the 1980's data, was 
published in 2001 (Gaudin, Griffin, and Sickles).  Whereas the methods of the 2001 study are somewhat 
different than the earlier work, the data is unchanged except for the omission of data which did not meet the 
requirements of new econometric procedures.  The issue addressed by the 2001 work is also considered in the 
present study (Appendix D).

2  Each of the ten base years shown here indicate population-weighted monthly water use, so as to accurately 
portray water use statewide.  That is, since the metric of interest is daily water use by the average Texan, 
communities with greater population are more significant.  Figure 3.1 provides unweighted results.



that average is 13,200 in the present study (Stage 2 data).  This difference makes it difficult to 
assign great significance to the water consumption "changes" displayed in Figure 5.1.  Yet, the 
fact that the series appearing in this figure are population-weighted implies that a partial 
accounting for population differences has been accomplished here.

Figures 5.2 and 5.3 display average water and sewer marginal prices for the ten years, similarly 
to Figures 3.5 and 3.6 previously in this report.  To present this meaningfully, the 1981-85 prices 
have been CPI-adjusted to the same base month (June/July 2003) as that employed in the present 
analysis.  Stage 2 data and population weighting are employed.  Several observations are readily 
obtained here, either directly from these figures or the underlying data.

• For water rates, the early 1980's was the era during which the average Texan experienced a 
switch from decreasing block rates.  Across the ten-period record displayed in Figure 5.2, the 
increasing nature of block rates has steadily advanced.  More detailed examination discussed 
previously indicates that many of the rate structures embedded here are uniform rates, yet 
increasing block rates are clearly dominant for the average Texan.  

• Water rate increases over these 22 years can be measured at different levels.  Here, average 
annual increases are listed for meter fees (not displayed in Figures 5.2-5.3) and two levels of 
marginal price.  Again, inflation has been netted out, so the nominal increases have been 
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much higher.

 Meter Fee:  +1.25%/yr. 5,250 gal.:  +1.85% /yr. 20,250 gal.:  +2.99% /yr.

At all consumption levels higher than 12,000 gallons, the increase has been at least 2% 
annually.

• For sewer rates, various elements of rate structures combine to maintain a decreasing block 
rate appearance for most of the displayed water use range in all years.  As compared to water 
rates faced by the average Texan, sewer rates have increased sharply over time, even at low 
consumption levels.

• Sewer rate increases (average annual) over this 22-year period are as follows once inflation 
components are removed.

 Meter Fee:  +0.82% /yr. 5,250 gal.:  +4.74% /yr. 20,250 gal.:  +4.69% /yr.

At nearly all consumption levels, the increase has been 4-5% annually.

Comparing Results

We now turn to the comparisons between the 1980's and 2000-era econometric results, 
principally those pertaining to the response of water demand to its drivers.  Noteworthy 
differences between the earlier work and the research reported here bear upon the available 
comparisons, so they are identified as follows.  First, the earlier work included an additional 
exogenous variable and omitted another used in the present study.  The additional 1980's variable 
(percent Hispanic population) was somewhat negatively collinear (–0.49) with the 30-year 
average rainfall variable (R), making it difficult to compare the two studies with respect to the 
rainfall driver.  Moreover, the prior study included sewer rates as well as systems that do and do 
not provide sewerage service, but it did not examine the distinction between the two system 
types with a binary variable (S) as performed here.  Second, the prior study explored more 
functional forms.  Fortunately, the generalized Cobb-Douglas function is among the forms 
evaluated in the earlier study.  Third, the earlier study was very focused on price as a potential 
demand driver, because Texas planning presumptions prevalent at the time tended to deny the 
relevance of water price.  Consequently, the 1980's publications included nonprice exogenous 
variables, but elasticity results were not tabulated for nonprice variables.  The Gaudin-led 
reexamination (2001) of the 1980's data did report nonprice elasticities, so some added 
comparisons can be obtained there.

With these distinctions in mind:

• General goodness-of-fit measures are slightly better for the 2000-era data when estimating a 
generalized Cobb-Douglas function (2006 Table 4.2 and 1989 Table D-4).  Given this small 
advantage, there seems to be little difference in the overall explanatory powers of these 
models in the two periods.

• Price elasticity – the responsiveness of water demand to price – has increased during the past 
twenty years.  The earlier work found that price elasticity generally lies around –0.36 when 
evaluated at overall variable means, (1991 Table 4, 2001 Table 3).  Comparable computations 
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from the 2000-era data find price elasticity to be in the vicinity of –0.55 (Table 4.3).  This 
may be an important change.  If this finding is not just an anomaly of 1999-2003 period, it 
has noteworthy implications for future conservation-oriented policy as well as project 
analyses.  

• Both sets of data are supportive of "higher" summer price elasticities.  Depending on which 
model formulation is assumed and which evaluation points are used, both data periods show 
summer price elasticities to be 0.1 to 0.2 higher (in magnitude) than they are in the winter.  
Thus, whereas mid-winter price elasticity may be around –0.50 in the 2000-era data, this 
elasticity appears to –0.60 to –0.70 in July/August.  Regardless of which evaluation basis 
(water service only, water/wastewater, etc.), the 0.1 to 0.2 increase appears to hold (2006 
Tables 4.4, 4.5).  The 1980's analyses indicated a similar swing (1991 Table 4).  It is therefore 
important for planners to realize that higher summer elasticities together with the higher 
levels of summer use make seasonal pricing a valuable policy instrument.  This finding 
dovetails well with the typical situation where summer water is more costly to provide and 
the opportunity cost of natural water supplies is elevated too.

• For the remaining comparable exogenous variables (C, Rainfall, and Income) the two study 
periods yield elasticities of the same overall signs and of like magnitudes (column 1 of 2001 
Table 3, S=0.628 group of 2006 Table 4.3).  This finding indicates that these drivers have 
relatively stable influences on community water use.

Other Texas Studies

Although there may be others, we are only aware of two Texas-focused studies with similarities 
to the research reported here.  Both of these studies are consultant reports sponsored partially or 
wholly by the Texas Water Development Board.  Unfortunately, the differing emphases and/or 
methods of these works, as contrasted to the present study, limit some of the comparisons that 
can be drawn.

The 1991 study conducted by Holloway and Ball uses data which is similar to that reported here.  
Eleven years of monthly data was assembled for 72 Texas cities.  This information included 
water use per capita, water price, and income.  Temperature and "number of dry days" 
information was also included.  Hence, there are strong data similarities with our work here.  

In their efforts to generate well-fitting statistical models as opposed to emphasizing driver 
effects, Holloway and Ball estimate separate models for different Texas regions (nine).  Different 
functional forms are reported for different regions, as statistical fit was allowed to determine a 
preferred function for each region.  Moreover, within each of these models, intercept-shifting 
dummy variables were used to separate the individual cities within each region.  As a 
consequence of these methods, which strongly tend to construct city-specific analyses, the study 
dismisses most of the data's cross-sectional variability.  It is this variability which is useful in 
analyzing drivers like price and income.  Consequently, it is not surprising that Holloway and 
Ball's reported price and income elasticities are widely variant across cities, since such findings 
are primarily determined by time-series elements of the data within their analysis (Holloway and 
Ball 1991, pp. 37-38).  Although one might argue that this approach can successfully identify 
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short-run elasticities, given the reliance on time-series data, monthly data for an average 
household in a single city is not very informative in examining responses to nonweather 
variables.  Because drivers like price and income change slowly within a given utility, data 
variability for these drivers is weak for time-series dominated data.  In any case, it is difficult to 
draw meaningful comparisons between the results of the Holloway and Ball and those of the 
present study because of the differences in methods.

The second report was led by John Whitcomb of Stratus Consulting (1999).  This 1999 study 
uses household-level microdata (defined above in Chapter 1) from the Cities of Austin, Corpus 
Christi, and San Antonio.  A mailed survey sent to 7500 households was used to acquire 
microdata pertaining to elements such as housing size and value, installed appliances, income, 
and attitudinal perspectives.  Monthly water use and price data for 1990-1997 was provided by 
the cities.  The analysis is primarily descriptive, and no regression work is performed.  Due to the 
microdata dimensions of the analysis, there are limited grounds for comparison with the present 
study.  However, sections of the Stratus report do attempt to address price elasticity 
measurement.  The reported elasticities of this study cannot be confidently accepted because they 
come from a simple comparison of Austin and San Antonio circumstances.  No attempt to control 
for other exogenous variables is made, and the two-system cross section represents a highly 
limited basis for examining price elasticity.  Not surprisingly, the tabulated findings are wide 
ranging (Stratus Consulting Inc. 1999, p. 4-3). 

Therefore, while these two studies may offer insights which are useful in certain Texas planning 
contexts, they do not reveal much information against which results of the present study can be 
benchmarked.  
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Appendix A

Supporting Tabulations Pertaining to 
Data Collection and Description
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Table A-1.  The 141 Weather Stations

Anahuac Crosbyton Jacksonville Paris 

Archer City Crystal City Joe Pool Lake Pearsall

Aspermont Daingerfield 9 S Junction 4 SSW Penwell

Athens Dalhart 6 SW Kaufman 3 SE Putnam

Bakersfield Danevang 1 W Kerrville 3 NNE Rio Grande City 1 SE

Ballinger 2 NW Del Rio 2 NW La Grange Robstown

Bardwell Dam Dell City 5 SSW La Joya Rockport

Bay City Waterworks Denton 2 SE Lake Alan Henry Roscoe

Beaumont Research Center Denver City Lake Fork Reservoir Rotan

Benbrook Dam Dimmitt 2 N Lake Kemp Sam Rayburn Dam

Blanco Eagle Pass Lake Palo Pinto San Antonio 8 NNE

Boerne Eastland Lake Tawakoni San Marcos

Boys Ranch Elgin Lamesa 1 SSE Sanderson

Brady Fairfield 3 W Laredo 2 Seminole

Breckenridge Floresville Levelland Shamrock 2

Brenham Floydada Lexington Silverton

Bridgeport Fort Davis Lipscomb Sinton

Brownfield 2 Fowlerton Littlefield Sonora

Brownwood Fredericksburg Livingston 2 NNE Spur

Burnet Freeport 2 NW Llano Stamford 1

Cameron Freer Longview Stephenville 1 N

Camp Wood Gatesville 4 SSE Lufkin 11 NW Stillhouse Hollow Dam

Candelaria Georgetown Lake Marshall Sulphur Springs

Canyon Gilmer 4 WNW Memphis Tahoka

Carrizo Springs Goldthwaite 1 WSW Miami Texarkana

Centerville Goliad Midland 4 ENE Tilden 4 SSE

Charlotte 5 NNW Gonzales 1 N Morton Town Bluff Dam

Childress 2 Graham Mount Pleasant Tulia

Clarendon Greenville KGVL Radio Mount Vernon Vernon

Clarksville 2 NE Hallettsville 2 N Muleshoe NTL WLR Waco 

Cleburne Harlingen Nacogdoches Water Valley

Cleveland Haskell Orange 9 N Weatherford

Coleman Henderson Ozona 1 SSW Wellington

Columbus Henrietta Jacksonville

Concho Pk Ivie Rsrvr Hillsboro Paducah 15 S

Corsicana Hondo Panhandle
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Table A-2.  Monthly Consumer Price Index for 1999-2003, Urban U.S. South*
Month 1999 2000 2001 2002 2003**

Jan 159.9 164.1 169.3 170.6 175.1

Feb 160.0 164.8 170.2 171.0 176.4

Mar 160.6 166.5 170.6 172.1 177.5

Apr 161.5 166.7 171.4 173.1 177.4

May 161.6 166.7 171.7 173.2 176.8

Jun 161.7 167.5 172.2 173.5 177.2

Jul 162.2 168.0 171.6 173.6 177.3

Aug 162.6 168.0 171.5 173.8 177.9

Sep 163.2 168.5 172.2 174.2 178.3

Oct 163.6 168.5 171.7 174.9 178.1

Nov 163.5 168.6 171.0 174.9 177.5

Dec 163.6 168.4 170.3 174.6 177.5

 * Source: U.S. Bureau of Labor Statistics.  Index based on average for 1982-1984 = 100.0 .

 ** 2003 average = 177.25
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Table A-3.  The 734 Communities and Systems Represented in the Study*
439 WSC Boerne Childress
Abernathy Bois D'Arc MUD China Springs Water Company
Acton MUD Bold Springs WSC Chisholm Trail SUD
Addicks UD Bolivar Peninsula SUD Cibolo
Afton Grove WSC Bolivar WSC Cimarron Park Water Co., Inc.
Alamo Heights Borger Cisco
Alice Bovina Clarendon
Allen Bowie Clarksville
Alto Boyd Claude
Alvarado Brandon-Irene WSC Clay Road MUD
Alvord Brazoria Cleburne
Amarillo Breckenridge Clifton
Anderson County Cedar Cr Bremond Clyde
Andrews Brenham Coahoma
Angelina WSC Bright Star-Salem WSC Cockrell Hill
Angleton Brookshire MWD Coleman
Archer City Brownfield Coleman County WSC
Argyle WSC Brownsville College Mound WSC
Arledge Ridge WSC Brownwood College Station
Arlington Bruceville-Eddy Collinsville
Armstrong WSC Brushy Creek WSC Colorado City
Arp Buena Vista-Bethel SUD Columbus
Arrowhead Lakes Bunker Hill Comanche
Arrowhead Shores Burkeville WSC Comanche Harbor
Aubrey Burns Redbank WSC Combine WSC
Austin Caddo Basin SUD Commerce
Bacliff MUD Caldwell Community WSC
Baffin Bay WSC Calhoun County Rural WS Concho Rural Water Corp.
Ballinger Callender Lake Conroe
Bandera County FWSD 1 Callisburg Converse
Bangs Calvert Copeville WSC
Barton Creek West WSC Canadian Country Terrace Subdiv.
Bastrop Caney Creek MUD County Line WSC
Batesville WSC Canton Craft-Turney WSC
B-C-Y WSC Canyon Crandall
Bell County WCID 3 Canyon Lake MH Estates Crane
Bells Canyon Lake WSC Creedmoor-Maha WSC
Belton Cape Royale UD Crescent Heights WSC
Ben Wheeler WSC Carrollton Crockett
Benbrook Carthage Crockett County WCID #1
Berryville Cash WSC Crosby MUD
Bertram Castle Hills Crowley
Bethany WSC Castroville Crystal Clear WSC
Bethel Ash WSC Centerville Crystal Springs Water Co
Bethesda WSC Central Washington Cty WSC Cypress Springs SUD
Bexar County WCID #10 Chalk Hill SUD Damascus-Stryker WSC
Bi County WSC Chandler Dawson
Bilma PUD Chatfield WSC Dayton
Birnam Woods Cherokee Shores De Soto
Bloomington Chester WSC Dean Dale WSC
Blue Bell Manor Utility Co. Chico Decker Hills

(continued on next page)

* We are deeply indebted to each water system that responded to our survey.  Some communities responding to the 
rate survey may have been dropped from the dataset through no fault of their own; see Chapter 2 for data 
development explanations.  
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Table A-3.  (continued)
Denton Fate Gunter Rural WSC
Denton Cnty Freshwater SD Fayette WSC Hallettsville
Desert WSC Ferris Hallsville
Diana SUD Flo Community WSC Haltom City
Diboll Florence Hamby WSC
Dimmitt Floresville Hardin WSC
Dobbins-Plantersville WSC #1 Forest Glade Water System 2 Harleton WSC
Dobbins-Plantersville WSC #2 Forest Hill Harlingen
Dodge-Oakhurst WSC Fort Belknapp WSC Harris County FWSD 27
Donna Fort Bend County WCID #2 Harris County FWSD 47
Dowdell PUD Fort Clark Spring MUD Harris County FWSD 61
Dripping Springs WSC Fort Gates WSC Harris County MUD #1
Dumas Fountainview Subdivision Harris County MUD #180
Duncanville Four Way WSC Harris County MUD #189
Eagle Pass Frankston Harris County MUD #24
Early Frankston Rural WSC Harris County MUD #365/#364
Earth Freeport Harris County MUD #368
East Bernard Freer WCID Harris County WCID 1
East Cedar Creek Friendswood Harris County WCID 99
East Central WSC Friona Harris County WCID 113
East Fork SUD Fruitvale WSC Harris County WCID 133
East Garrett WSC Gainesville Hart
East Marion County WSC Galena Park Haskell
East Medina County SUD Galveston County MUD #12 Haslet
East Mountain Galveston County WCID #12 Hazy Hollow East Estates
East Plantation UD Galveston County WCID 8 Hearne
East Rio Hondo WSC Garden Ridge Hemphill
East Tawakoni Garland Henrietta
Eden Garrett System Hi Texas Water Company
Edna Garrison Hickory Creek SUD
El Paso Gaston WSC Hidalgo
El Paso County Gastonia-Scurry WSC Highland Park, Town of
El Paso County Tornillo Wid Gholson WSC Highland Village
El Paso County WCID 4 Giddings Highsaw
El Paso WCID-Westway Gilmer Hill Country
El Tanque WSC Glenwood WSC Hill County WSC
Elderville WSC Golden WSC Hilltop Lakes WSC
Eldorado Goldthwaite Holiday Beach WSC
Electra Goliad Holliday
Elgin Gonzales County WSC Homestead MUD
Elk-Oak Lake WSC Gorman Hondo
Elm Creek WSC Grand Saline Honey Grove
Elmo WSC Grandview Howe
Emory Granite Shoals Hudson WSC
Ennis Grant Road PUD Humble
Euless Grapeland Huntsville
Eustace Grapevine Hurst
Everman Greenville Hutto
Fair Oaks Ranch Greenwood Village Huxley
Fairfield Grimes County System Indian Springs Estates
Falfurrias Groesbeck Inverness Crossing
Farmers Branch Groveton Iowa Park
Farmersville Gruver Irving
Farwell Gum Springs WSC 1 Itasca

(continued on next page)
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Table A-3.  (continued)
Jacksonville Live Oak PUD Montgomery County MUD #47
Jarrell-Schwertner WSC Lockney Montgomery County MUD #60
Jasper Log Cabin Montgomery County MUD #67
Jefferson Lometa Montgomery County WCID 1
Jewett Longhorn Town UD Montgomery Gardens
Jim Wells County FWSD #1 Longview Mooney Heights
Johnson County FWSD 1 Lorenzo Morton
Jonah Water Los Fresnos Moscow WSC
Jones WSC Lost Creek MUD Moulton
Katy Louetta Road UD Mount Vernon
Kaufman Luella WSC Mountain Springs WSC
Kemp Luling New Boston
Kempner WSC Lumberton MUD New Braunfels
Kendall County Utility Co. Lyford New Caney MUD
Kendall County WCID 1 Lytle New Hope WSC
Kenedy M&M WSC New London
Kerens Mabank New Prospect WSC
Kermit Mac Bee WSC New Waverly
Kerrville Madisonville Nocona
Kerrville South Water Co. Malakoff North Bosque WSC
Kingsland WSC Manor North Cherokee WSC
Kiowa Homeowners WSC Mansfield North Forest MUD
Knox City Marfa North Hopkins WSC
Kountze Markham MUD North Hunt WSC
Kyle Marlin North Richland Hills
La Grange Mary Francis/Bertrand North Runnels WSC
La Joya WSC Mason North Rural WSC
La Porte Mason Creek UD North Zulch MUD
Lacy-Lakeview McAllen Northampton MUD
Lago Vista Mclean Northeast
Lake Cities McClelland WSC Northwest
Lake Medina Shores MClennan Co. WCID 2 Northwest Grayson WCID #1
Lake Palo Pinto Area WSC Meadowlakes MUD #1 Northwest Harris Cty MUD 22
Lake Ransom Canyon, Town of Meeker MWD Northwest Harris Cty MUD 23
Lake Tanglewood, Inc. Melissa Northwest Harris Cty MUD 24
Lakeway Harbor Memorial Villages Nueces County WCID 4
Lakeway MUD Memphis Nueces WSC
Lamesa Men WSC Oak Hills WSC
Lancaster Mesquite Oak Trail Shores
Lavernia Mexia Oakridge North
Lavon WSC Midlothian Odem
Leon Valley Milano WSC Odessa
Leonard Military Highway WSC Odem
Levelland Millersview-Doole WSC Odonnell
Lewisville Milligan WSC Omaha
Liberty Millsap WSC Onalaska Water Supply Corp.
Liberty City WSC Mineral Wells One-Five-O WSC
Liberty Hill WSC Mitchell County Orange Co. WCID #2
Lilly Grove SUD Moffat WSC Orange County WCID #1
Lindale Montgomery County MUD #6 Orange Grove
Lindale Rural WSC Montgomery County MUD #7 Ore City
Little Elm Montgomery County MUD #36 Ovilla
Little River-Academy Montgomery County MUD #40 Oyster Creek
Littlefield Montgomery County MUD #46 Paducah

(continued on next page)
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Table A-3.  (continued)
Palestine River Acres WSC Shoreacres
Palm Valley Estates Riverside WSC Sinton
Panhandle Robertson County WSC Smithville
Panola-Bethany WSC Robinson South Sabine WSC
Pantego, Town of Roby South Tawakoni WSC
Parker County WSC Rockdale Southeast WSC
Parker WSC Rockett SUD Southern Montgomery MUD
Pasadena Rocksprings Southern Utilities Company
Pearland River Acres WSC Southside
Pearsall Rockwall Southwest Fannin SUD
Pendleton WSC Rolling Hills Southwest Milam WSC
Perryton Rosenberg Spearman
Pflugerville Round Rock Splendora WSC
Pharr Rowlett Spring Creek Forest PUD
Pine Harbor Royse City Spring Creek UD-Fox Run
Pink Hill WSC Rural WSC Spring Valley WSC
Pioneer Valley Water Co. Rusk Springs Hill WSC
Pittsburg Sabinal Staff WSC
Plains Sachse Stanley Lake MUD
Plainview Salado WSC Star Mountain WSC
Plano San Angelo Starr County WCID #2
Plum Creek San Antonio Starr WSC
Poetry WSC San Augustine Rural WSC Stephens County Rural WSC
Point Comfort San Juan Stephenville
Polonia WSC San Marcos Stinnett
Ponder San Saba Sturdivant-Progress WSC
Port Arthur Sanderson Sudan
Port Lavaca Santa Rosa Sugar Land
Port Mansfield Schertz Sulphur Springs
Port Neches Schulenburg Sundown
Post Seabrook Sunray
Postwood MUD Seagoville Sweetwater
Poteet Sealy Talty WSC
Poth Sebastian MUD Tarkington SUD
Potosi WSC Selma Tatum
Pottsboro Seminole Taylor
Preston Shores Seymour TCW Supply, Inc.
Pritchett WSC Shady Grove WSC Temple
Quail Creek MUD #5 Snyder Terrell
Quanah Somerville Texarkana
Queen City Sonora The Colony
Quitman Sour Lake The Oaks WSC
Ramey WSC South Grayson WSC Thorndale
Ranger South Houston Three Rivers
Rankin Road West MUD South Jasper WSC Timber Lane UD
R-C-H WSC South Limestone County WSC Timberwood
Red Oak Shady Hollow MUD Tomball
Red River County WSC Sharon WSC Travis County WCID #10
Redwater Sharyland WSC Tri County SUD
Reno Shasla PUD Thorndale
Ricardo WSC Shenandoah Tri WSC
Richland Hills Sherwood Shores Trinidad
Ridgecrest Shiner Trinity Rural WSC
Rio Hondo Shirley WSC Trophy Club MUD #1

(continued on next page)
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Table A-3.  (continued)
Troup Webster Wheeler
Troy Weimar White Deer
Twin Creek WSC Wellington White Shed WSC
Two Way WSC Weslaco Whitehouse
Universal City West Whitesboro
University Park West Bell County WSC Whitney
Upper Jasper Cty Water Auth 1 West Cedar Creek MUD Wichita Falls
Valley Mills West Columbia Wichita Valley WSC
Van Horn West End WSC Wildwood Resort City
Van Vleck West Gregg SUD Willis
Vega West Hardin WSC Wills Point
Venus West Harris County MUD #10 Wilmer
Vernon West Harris County MUD #11 Windthorst WSC
Victoria West Harris County MUD #17 Winnsboro
View-Caps WSC West Harris County MUD #9 Winters
Village Jamaica Beach West Harrison WSC Woodbine WSC
Virginia Hill WSC West Jefferson County Woodbranch Village
Waco West Park MUD Woodcreek MUD
Waller County System West University Place Woodrow-Osceola WSC
Wallis West Wise Rural WSC Woodsboro
Walnut Cove Subdivision Westador MUD Woodville
Walnut Creek SUD Western Hills Harbor Wright City WSC
Walnut Grove Western Hills WS Wylie
Warren WSC Western Lake Estates Wylie Northeast WSC
Waskom Westminster WSC Yoakum
Waxahachie Westwood Beach\Wildewood Zavalla 
Weatherford Westworth Village
Webb County Water Utility Wharton Co. WCID 1
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Table A-4.  Average Daily Use per Person

Month 1999 2000 2001 2002 2003

(gallons per capita per day)

Jan 122.5 124.9 116.6 120.4 115.9

Feb 126.8 128.6 115.1 119.9 116.5

Mar 126.2 127.3 111.0 126.1 118.7

Apr 139.9 137.1 131.8 141.0 146.3

May 146.7 153.7 151.4 169.7 173.3

Jun 162.1 156.2 180.3 183.0 166.6

Jul 184.4 219.3 216.4 169.1 192.0

Aug 234.3 238.1 215.4 198.2 206.7

Sep 201.0 209.9 152.9 172.9 155.4

Oct 166.9 145.8 140.8 137.3 141.5

Nov 146.4 119.7 129.4 121.5 126.6

Dec 128.3 115.0 113.7 115.1 120.6
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Table A-5.  Monthly Climatic Means For 141 Texas Weather Stations

Year Month
Temperature (degrees F) Percentage of days with 

precipitation over 0.25 inchLow High
1999 Jan 35.6 63.9 6.1

Feb 41.3 70.8 1.3
Mar 44.6 69.0 10.7
Apr 54.0 79.6 7.4
May 60.8 84.2 14.7
Jun 69.1 89.6 13.0
Jul 71.1 93.6 6.9

Aug 71.5 98.6 3.8
Sep 62.8 89.5 5.6
Oct 50.8 81.1 5.7
Nov 44.2 75.0 1.2
Dec 34.5 62.7 5.6

2000 Jan 36.3 63.7 4.2
Feb 41.6 70.7 5.2
Mar 47.5 74.2 9.1
Apr 52.0 78.8 7.9
May 64.2 88.6 10.2
Jun 68.8 88.5 18.0
Jul 71.3 97.2 2.5

Aug 71.0 98.7 1.8
Sep 63.1 93.5 4.2
Oct 56.9 77.6 14.2
Nov 40.4 61.4 18.4
Dec 30.6 52.6 7.6

2001 Jan 32.4 53.9 11.3
Feb 39.2 63.1 8.5
Mar 41.5 63.1 14.5
Apr 55.2 79.5 3.4
May 61.6 96.1 11.7
Jun 68.2 92.8 8.0
Jul 72.9 97.7 3.2

Aug 71.3 95.3 11.5
Sep 62.9 86.7 12.7
Oct 50.8 79.1 5.5
Nov 47.4 70.3 10.4
Dec 36.8 61.6 8.2

2002 Jan 34.7 61.4 4.8
Feb 32.7 60.6 6.3
Mar 40.6 68.3 7.7
Apr 57.2 79.9 5.9
May 61.0 86.0 8.3
Jun 68.4 91.9 9.2
Jul 70.8 91.4 15.3

Aug 71.0 95.0 6.2
Sep 64.0 88.8 9.9
Oct 55.5 74.3 19.4
Nov 40.3 65.1 6.0
Dec 35.7 59.4 12.3

2003 Jan 32.6 58.1 2.9
Feb 36.3 58.5 10.2
Mar 43.4 69.4 5.4
Apr 52.5 79.9 3.9
May 63.2 87.8 5.7
Jun 66.9 89.7 17.7
Jul 70.8 94.1 7.6

Aug 70.8 95.7 7.9
Sep 62.9 85.2 11.9
Oct 54.5 80.5 7.1
Nov 46.1 69.6 5.0
Dec 33.7 63.5 3.1
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Table A-6.  Average Precipitation for 141 Texas Weather Stations (1971-2000)
Precipitation (Inches per Month) Standard

DeviationMonth Minimum Maximum Mean

Jan 0.32 5.94 1.78 1.32

Feb 0.28 4.55 1.89 1.07

Mar 0.20 5.29 2.12 1.21

Apr 0.14 4.59 2.39 1.04

May 0.44 5.94 3.89 1.17

Jun 0.87 6.95 3.61 0.99

Jul 1.08 4.86 2.25 0.75

Aug 1.27 5.87 2.58 0.60

Sep 0.93 7.80 3.28 0.99

Oct 0.82 5.34 3.21 1.20

Nov 0.40 5.88 2.32 1.49

Dec 0.46 6.12 2.11 1.46
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Appendix B

Water and Wastewater Rate Survey Documents
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Appendix C

Supporting Tabulations Pertaining 
to Econometric Results
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Table C-1.  Parameter Estimates for the Double Log and Linear Regressions

Variable
Log-Log

(ln Q = ...)
Variable

Linear
(Q = ...)

(standard errors are in parentheses)

ln C
0.442

(0.00717)
C

52.3
(0.777)

ln R
-0.0384

(0.00402)
R

-5.43
(0.268)

ln I
0.101

(0.00847)
I

0.000717
(0.000055)

ln P
-0.508

(0.00429)
P

-13.1
(0.15)

S
0.418

(0.00396)
S

56.3
(0.690)

Intercept
5.04

(0.0115)
Intercept

78.6
(2.32)

Adjusted R2 0.46 0.36

(Mean Squared Error)0.5 0.37 64.93

n 39145 39145
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Table C-2.  GCD Parameter Estimates for W-only and W/WW Service Partitions

Water Service Only (S=0) Water & Wastewater Service
Parameter Coefficient Standard Error Coefficient Standard Error

ln C 0.667 0.0522 0.0329* 0.0240

ln R 0.475 0.0366 0.375 0.0277

ln I 1.23 0.110 0.0657* 0.0750

ln P -0.389 0.0523 -0.332 0.0412

ln (C+R) -0.360 0.0861 -0.222 0.0604

ln (C+I) -0.706 0.134 0.554 0.0845

ln (C+P) 0.817 0.107 0.968 0.0733

ln (R+I) -0.432 0.0989 -0.121* 0.0676

ln (R+P) -0.466 0.0696 -0.554 0.0524

ln (I+P) -0.867 0.113 -0.786 0.0783

Constant 6.64 0.120 5.65 0.0821

n 14548 24597

Adjusted R2 0.49 0.33

(Mean Squared Error)0.5 0.33 0.38

*These parameter estimates are insignificantly different from zero at the 99% confidence level.
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Appendix D

A Panel Model

An econometric approach that has been increasingly advocated in water demand analysis is panel 
data analysis (Arbués, Barberán, and Villanúa 2004).  Panel data analysis includes a variety of 
techniques that take advantage of the structure of cross-sectional time series, such as the dataset 
used in this report, to refine parameter estimates and reduce error.  Unfortunately, a panel is only 
effective when each community's time record is complete.  Of the 730 communities whose data 
are usable in the primary, pooled analysis, complete records are only available for 385 (53%) 
communities.  In comparing panel analysis to the OLS approach as exercised in this research, a 
primary concern is whether the sample is substantively altered by the exclusion of almost half of 
the data.  This concern may be allayed by Table D-1, which compares the variables of analysis in 
this subsample to those of the sample at large.  Based on mean variable values, the panel 
subsample appears to be quite representative of the full sample in every dimension.

Table D-2 presents the results of a panel regression of the same GCD form used in Chapter 4.  
By identifying the data as a being cross-sectional time series in nature, the regression package is 
able to assign a unique error parameter to each community, rather than a common error variance 
throughout the data.  A comparison of Tables D-2 and 4.2 reveals some differences in coefficient 
estimates and a remarkable similarity in the confidence interval of each parameter.  Table D-3 
shows the elasticities derived from this estimation, analogous to the first rows of Table 4.3.  
Thus, the panel model provides equivalent precision with only one half of the observations.  
Elasticities calculated at the sample means from coefficients of the panel model agree with those 
derived from the OLS model to a great extent.  Some divergence between the two models away 
from the means is due to the sensitive balance of the interactive minor terms of the Generalized 
Cobb-Douglas form.  In the end, preference must be given to the larger sample size of the 
Chapter 4 regression.

The primary function of Table D-3 within the context of this report is to illustrate the 
insensitivity of elasticity estimates to alternate procedures.  The results of the panel analysis add 
little qualitative substance to the analysis of Chapter 4.
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Table D-1.  Comparison of Summary Statistics

Variable Units OLS Mean Panel Mean

Population # 13232 14643

Use (month) kGal 67600 69800

Personal Daily Use gallons 145 143

Personal Income dollars 26321 25897

Total Bill dollars 52.72 52.68

Price $/kGal 4.96 4.94

Low Temperature ºF 55.3 55.4

High Temperature ºF 78.2 78.2

Days with Rain days 2.9 3.0

Mean Annual 
Precipitation inches 3.2 3.2

Table D-2.  Parameter Estimates for GCD Panel Regression (n=23100)
Parameter Coefficient Standard Error

ln C -0.106 0.0267
ln R 0.216 0.0222
ln I 0.781 0.0633
ln P -0.442 0.0348

S 0.391 0.0243
ln (C+R) 0.092 * 0.0475
ln (C+I) 0.497 0.0702
ln (C+P) 1.519 0.0591
S • ln C -0.037 0.0129
ln (R+I) -0.417 0.0533
ln (R+P) -0.338 0.0406
S • lnR 0.040 0.0074
ln (I+P) -1.612 0.0686
S • ln I -0.251 0.0183
S • ln P 0.124 0.0083

Constant 5.28 0.0688
Log Likelihood -2427

* All parameter estimates except this one are significant at the 99% level.
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Table D-3.  Panel Demand Elasticities
Elasticity

Evaluated at Variable's

Variable Mean
Standard 
Deviation

Mean – S.D. Mean Mean + S.D.

S = 0.649

C 1.82 0.43 0.57 0.52 0.51

Rainfall 3.23 1.26 -0.07 -0.06 -0.05

Income 2.59 0.60 -0.01 0.17 0.29

Price 4.94 1.96 -0.53 -0.51 -0.49
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